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Abstract. We verify a conjecture of P. Adjamagbo that if the frontier of
a relatively compact subset V0 of a manifold is a submanifold then there
is an increasing family {Vr} of relatively compact open sets indexed by
the positive reals so that the frontier of each is a submanifold, their
union is the whole manifold and for each r ≥ 0 the subfamily indexed
by (r,∞) is a neighbourhood basis of the closure of the rth set. We use
smooth collars in the differential category, regular neighbourhoods in the
piecewise linear category and handlebodies in the topological category.

Dedicated to the memory of Vaughan Jones

Vaughan Jones was a student in one of my classes, Mathematical Analysis, at
the University of Auckland in 1972. Rumours of his discovery of what came to be
known as the Jones polynomial were floating around at a conference I attended
in Dubrovnik in 1985: it was exciting to be a New Zealander and to learn about
this work! Alas, being on a waiting list for four months to fly to the International
Congress of Mathematicians in 1990 was not enough to get me to witness his award
of the Fields Medal in Kyoto in 1990. A year or two later I was able to negotiate an
offer for him to be appointed part time as the first Distinguished Alumnus Professor
of the University of Auckland, thereby beginning over a quarter of a century of
Vaughan’s wonderful gift to the mathematical community in New Zealand in the
form of the summer workshops and his many other contributions. He attended all
of these workshops and his mixture of down-to-earth friendliness towards all and
his mathematical prowess were greatly appreciated by those who attended. Sorry,
Vaughan, that I couldn’t attend your wind-surfing schools nor you join me on my
tramps in the hills but the times we spent together are amongst my best memories.

1. Introduction

Pascal Adjamagbo, [1], has proposed the following conjecture1:
Given a relatively compact non-empty open subset V0 of a connected
manifold Mm such that the boundary of V0 is a submanifold, there exists
an increasing family 〈Vr〉r∈[0,∞) of relatively compact open subsets of M
the boundaries of which are submanifolds such that M is the union of the
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1I thank Adjamagbo for drawing my attention to this conjecture.
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elements of the family, and that for any r ∈ [0,∞), the family 〈Vs〉s>r is
a fundamental system of neighbourhoods of the closure of Vr.

In this paper we verify Adjamagbo’s conjecture in the differential, piecewise
linear and topological categories. In the topological category, Adjamagbo makes
no assumptions regarding the tameness of the boundary manifold, so it could be
wild at every point; see [6, Theorem 2.6.1] for example. In fact in both the piecewise
linear and topological categories we do not need the boundary of V0 to be a manifold
for all of the rest of the conjecture to be satisfied. While our proof in the differential
category does assume that the boundary of V0 is a manifold we can dispense with
that, too, by use of, for example, handlebodies as in the proof in the topological
case.

All of our manifolds are assumed to be metrisable. Indeed, the positive answer
to the question we address implies that the manifold is σ-compact and that in turn
implies that the manifold is metrisable if Hausdorff. As in the conjecture we also
assume our ambient manifold M to be connected, but when we talk of submani-
folds, such as the boundary of a manifold, we do not demand connectedness. The
connectedness assumption is not entirely necessary but in addressing Adjamagbo’s
conjecture we can deal with components of M separately so we may as well assume
connectedness. When a metric on Rn is required it is assumed to be the usual
euclidean metric.

The differential category is easier to deal with than the topological and piecewise
linear categories but it also uses a technique that helps us in the other two. We
consider this case in Section 2.

In Section 3 we verify the conjecture in the topological category. An important
tool used in our proof is a handlebody, a special structure on (part of) a manifold.
We also discuss aspects of handlebodies in Section 3.

In many ways the PL category is similar to the topological category. It is con-
sidered in Section 4.

There is some sort of continuity in the choice of the neighbourhoods required
in the conjecture: for any r ∈ [0,∞), the family 〈Vs〉s>r is a fundamental system
of neighbourhoods of the closure of Vr. However our proofs of the conjecture also
allow jumps in the sense that there is no requirement that Vr = ∪s<rVs for any r,
though our construction ensures that this equality holds for most r. We explore
this further in Section 5.

While Adjamagbo, like almost all manifold topologists, intended that the man-
ifolds in the conjecture should be Hausdorff it should be pointed out that the
conjecture fails in the non-Hausdorff context, even in dimension 1. Indeed, begin
with the topological product R× N, where the reals R and the positive integers N
carry their usual topologies, and then define an equivalence relation ∼ on R × N
by declaring (x,m) ∼ (y, n) if and only if (x,m) = (y, n) or x = y < 0. Then the
quotient M = R × N/∼ is a non-Hausdorff manifold consisting of a single copy of
the interval (−∞, 0) with branches at points of the form (0, n) leading to infinitely
many copies of the interval (0,∞). The ‘origins,’ ie points of the form (0, n), cannot
be mutually separated by disjoint neighbourhoods. Letting V0 = (0, 1) × {1}/∼,
which is homeomorphic to the open interval (0, 1), it follows that V0 is homeomor-
phic to the compact interval [0, 1]. However any neighbourhood of V0 must contain
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the set (−ε, 0) × N/∼ for some ε > 0 and hence its closure contains all of the
infinitely many ‘origins’ (0, n) so cannot be compact.

2. Adjamagbo’s Conjecture in the Differential Category

Firstly we deal with the smooth case.

Lemma 1. Let Mm be a non-compact differentiable manifold and C ⊂M a com-
pact subset. Then there is a sequence 〈Mn〉∞n=1 satisfying:
• each Mn is a compact smooth submanifold with boundary of M ;
• M =

⋃∞
n=1Mn;

• C ⊂M1;
• each Mn is contained in the interior of Mn+1;
• If C is also connected then so is each Mn.

Proof. Choose a proper, smooth function f : M → [0,∞) such that f(C) = 0. By
Sard’s Theorem the set of critical values has Lebesgue measure 0; in particular there
is an unbounded increasing sequence of regular values. Without loss of generality
we may assume that for each positive integer n, the integer n is itself a regular
value of f . Then for each n the set f−1(n) is an (m − 1)-submanifold of M . Set
M ′n = f−1([0, n]). In the case where C is connected, if M ′n is not connected then
we take connected sums along the boundaries and within f−1([0, n + 1)) of the
components of M ′n to obtain Mn; otherwise just set Mn = M ′n. �

Theorem 2 (Smooth Category). Let M be a smooth manifold and V0 ⊂ M a
relatively compact non-empty open subset of M such that the boundary of V0 is a
submanifold of M . Then there exists an increasing family 〈Vr〉r∈[0,∞) of relatively
compact open subsets of M the boundaries of which are submanifolds such that M
is the union of the elements of the family, and that for any r ∈ [0,∞), the family
〈Vs〉s>r is a fundamental system of neighbourhoods of the closure of Vr. If V0 is
connected then so is each Vr.

Proof. Set M0 = V0, a submanifold with boundary of M .
Consider firstly the case where M is compact. The boundary ∂M0 is collared

in M so there is an embedding e0 : ∂M0 × [0, 1] → M such that e0(x, 0) = x
for each x ∈ ∂M0 and e0(∂M0 × [0, 1]) ∩ M0 = ∂M0. For each r ∈ (0, 1) set
Vr = M0 ∪ e0(∂M0 × [0, r)). For r ≥ 1 set Vr = M . Then the family 〈Vr〉r∈[0,∞)

satisfies the requirements of the theorem.
Now consider the case where M is non-compact. Let Mn (n ≥ 1) be as in Lemma

1 and, as in the compact case, choose embeddings en : ∂Mn × [0, 1] → Int(Mn+1)
such that en(x, 0) = x for each x ∈ ∂Mn and en(∂Mn×[0, 1])∩Mn = ∂Mn. For each
n = 0, 1, . . . set Vn = Int(Mn) and for each r ∈ (0, 1) set Vn+r = Mn ∪ en(∂Mn ×
[0, r)). Then the family 〈Vr〉r∈[0,∞) satisfies the requirements of the theorem. �

3. Handlebody Neighbourhoods and Adjamagbo’s Conjecture in the
Topological Category

We begin by recalling some facts about handlebodies.

Definition 3. Let Mm be a topological manifold with boundary and let k ∈ {0, 1, . . . ,m}.
Suppose that e : Sk−1 × Bm−k → ∂M is an embedding and let Me be the m-
manifold obtained from the disjoint union of M and Bk × Bm−k by identifying
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x ∈ Sk−1 × Bm−k with e(x) ∈ ∂M . Then we say that Me is obtained from M
by adding a k-handle of dimension m to M , with the prefix k suppressed when we
do not want to specify it. The image of Bk × Bm−k in Me is called a (k)-handle.
A handlebody is a manifold obtained inductively beginning at ∅ then successively
adding a handle of dimension m to the output of the previous step: if infinitely
many handles are added then we demand that the handles are locally finite. If a
handlebody has been obtained by adding only finitely many handles then we call it
a finite handlebody.

In this definition we take B` = {x ∈ R` / |x| ≤ 1}, the unit ball in R`, so S`−1 is
the boundary sphere of B`. Of course when constructing a handlebody, of necessity
the first handle to be added must be a 0-handle as ∂∅ = ∅ and Sk−1 6= ∅ when
k > 0. A handlebody is a manifold with boundary.

The following two theorems characterise the existence of handlebody structures
on topological manifolds.

Theorem 4. [3, Theorem 9.2] A metrisable manifold fails to have a handlebody
decomposition if and only if it is an unsmoothable 4-manifold.

Theorem 5. [3, Theorem 8.2] Every connected, non-compact, metrisable 4-manifold
is smoothable.

A basic result needed in our proof is the following proposition.

Proposition 6. [4, Proposition 3.17] Suppose that M is a handlebody and K ⊂M
is compact. Then there is a finite handlebody W ⊂M which is a neighbourhood of
K.

We also require the following weak version of the collaring theorem of Brown.

Theorem 7. [2] Let W be a finite handlebody. Then there is an embedding e :
∂W × [a, b]→W (a < b) such that e(x, b) = x for each x ∈ ∂W .

The embedding e is called a collar of the boundary ∂W . Using the notation of
Theorem 7, we will call the set e(∂W × {c}) a level of the collar and the subset
W \ e(∂W × (c, b]) will be said to be inside the level e(∂W × {c}). A set inside
a level of a handlebody is a compact subset of W ; moreover the boundary of this
set is a manifold of one lower dimension and, when c > a, the set inside the level
e(∂W × {c}) is homeomorphic to W so is itself a finite handlebody.

In this section we construct a neighbourhood basis of a compactum in a manifold
where the neighbourhoods making up the basis are all handlebodies. We then use
this construction to prove Adjamagbo’s conjecture.

Proposition 8. Let Mm be a connected topological manifold and V0 ⊂ M a non-
empty, relatively compact, open subset of M such that the frontier of V0 in M is
an (m− 1)-manifold. Suppose further in the case where M is closed that V0 6= M .
Then for each real number r ∈ (0, 1) there is a finite handlebody Wr such that for
each r ∈ [0, 1), the collection {Int(Ws) / s > r} is a neighbourhood basis of Wr,
where W0 is the closure of V0.

Proof. Suppose given Mm and V0 ⊂M as in Proposition 8. In the case where M
is closed pick a point p ∈M \ V0. It follows that M (in the case where M is open)
or M \ {p} (in the case where M is closed) may be embedded properly in some
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euclidean space, see [4, Theorem 2.1(1⇔36)] for example. Let d be the metric on
M or M \ {p} as appropriate inherited from the euclidean space under some fixed
proper embedding.

For each natural number n let

Un =

{
x ∈M / d(x, V0) <

1

n

}
.

Then Un+1 ⊂ Un for each n and the collection {Un / n = 1, 2, . . . } is a neighbour-
hood basis for V0.

For each n use Proposition 6 to find a finite handlebody Xn ⊂ Un containing

Un+1 in its interior. By Theorem 7 we may find a collar en : ∂Xn×
[

1
n+2 ,

1
n

]
→ Xn

such that en
(
x, 1

n

)
= x for each x ∈ ∂Xn. Further, compactness of the disjoint sets

Un+1 and ∂Xn allows us to assume that the image of en is disjoint from Un+1.
For each r ∈ (0, 1) choose Wr as follows. There is a unique natural number n

such that 1
n+1 ≤ r < 1

n . Let Wr be the set inside the level en(∂Xn × {r}) of the

handlebody Xn. As noted above, Wr is a handlebody. Moreover, for each r ∈ [0, 1),
the collection {Int(Ws) / s > r} is a neighbourhood basis of Wr. �

We are now ready to prove Adjamagbo’s conjecture in the topological category.

Theorem 9 (Topological Category). Let M be a topological manifold and V0 ⊂M
be a relatively compact non-empty open subset of M such that the boundary of V0 is
a manifold. Then there exists a family {Vr / r ∈ [0,∞)} of relatively compact open
subsets of M the boundaries of which are submanifolds such that M is the union of
the elements of the family, and that for any r ∈ [0,∞) the family {Vs / s > r} is a
fundamental system of neighbourhoods of the closure of Vr. If V0 is connected then
so is each Vr.

Proof. The case where V0 = M is trivial so we assume that V0 6= M .
Applying Proposition 8 to the case V0 6= M , for each r ∈ (0, 1) set Vr = Int(Wr).

Then each Vr is open and relatively compact with boundary a topological manifold,
and for each r < 1 the family {Vs / s > r} is a neighbourhood basis of the closure
of Vr. The proof is complete in the case where M is closed if we set Vr = M for
each r ≥ 1.

Suppose M is open. In this case follow the procedure in the proof of Proposi-
tion 8 but now replace the sets Un by sets U ′n =

{
x ∈M / d(x, V0) < n

}
and the

handlebodies Xn by finite handlebodies X ′n whose boundaries lie in U ′n+1 \U ′n. For
each natural number n and each r ∈ [n, n+ 1) we then construct the open sets Vr
to be the interiors of sets inside appropriate levels of the handlebody X ′n.

To ensure that each Vr is connected when V0 is, when we construct the handle-
bodies Xn, we discard any supernumerary components of the handlebodies. �

Remark 10. Just as in the smooth and (as will be evident) piecewise linear cases,
the sets Vr are all regular-open, ie Vr = IntVr, for all r > 0.

4. Adjamagbo’s Conjecture in the Piecewise Linear Category

Finally we consider the piecewise linear case. Because the proof is similar to the
topological case we just point out the differences. The main difference is that we use
regular neighbourhoods, see [7, Section 12] for example, instead of handlebodies.
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Proposition 11. Let Mm be a connected piecewise linear manifold and V0 ⊂M a
non-empty, relatively compact, open subset of M such that the frontier of V0 in M
is an (m−1)-submanifold. Then for each real number r ∈ (0, 1) there is a piecewise
linear manifold Wr such that for each r ∈ [0, 1), the collection {Int(Ws) / s > r}
is a neighbourhood basis of Wr, where W0 is the closure of V0.

Proof. If V0 = M then we may set Wr = M for all r ∈ (0, 1). So suppose that
V0 6= M .

As in the proof of Proposition 8, embed M or M \ {p} in some euclidean space
and for each natural number n let

Un =

{
x ∈M / d(x, V0) <

1

n

}
.

Compactness of V0 means that Un+1 is also compact so is contained in a finite
union of simplices of M with the union of these simplices lying in Un. Let Xn ⊂ Un

be a regular neighbourhood of this union of simplices, hence a piecewise linear
manifold. Then the sets Wr may be obtained just as in the proof of Proposition 8
by using a piecewise linear collar on ∂Xn. �

Theorem 12 (Piecewise Linear Category). Let M be a piecewise linear manifold
and V0 ⊂M a relatively compact non-empty open subset of M such that the bound-
ary of V0 is a submanifold. Then there exists an increasing family 〈Vr〉r∈[0,∞) of
relatively compact open subsets of M the boundaries of which are submanifolds such
that M is the union of the elements of the family, and that for any r ∈ [0,∞), the
family 〈Vs〉s>r is a fundamental system of neighbourhoods of the closure of Vr. If
V0 is connected then so is each Vr.

Proof. The proof is essentially the same as the proof of Theorem 9 but we make
use of Proposition 11 rather than Proposition 8. �

5. Continuity

In this section we address the continuity of the choice of Vr in Theorems 2, 9 and
12 as r varies. Since, as observed in Remark 10, the sets Vr are regular-open and
often the study of continuity involving multifunctions is restricted to the choice of
closed sets, we will look at how Vr varies with r, noting that Vr is compact for all
r.

For multifunctions there are two main concepts of continuity: upper semi-
continuity and lower semi-continuity, both introduced by Michael in [5].

Definition 13. Fix two topological spaces X and Y . A multifunction from X to Y
is a function assigning to each point of X a subset of Y . We will use the notation
f : X � Y to denote such a function. We will also restrict our multifunctions to
the case where f(x) is a closed subset of Y for each x ∈ X.

Suppose that f : X � Y is a multifunction.
(i) f is upper semi-continuous at x ∈ X if for each open subset V ⊂ Y for

which f(x) ⊂ V there is a neighbourhood U of x such that f(ξ) ⊂ V for each
ξ ∈ U . When f is upper semi-continuous at x for each x ∈ X then f is upper
semi-continuous.
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(ii) f is lower semi-continuous at x ∈ X if for each open subset V ⊂ Y for which
f(x)∩V 6= ∅ there is a neighbourhood U of x such that f(ξ)∩V 6= ∅ for each
ξ ∈ U . When f is lower semi-continuous at x for each x ∈ X then f is lower
semi-continuous.

We define the multifunction V : [0,∞) � M by V (r) = Vr as constructed in
Theorems 2, 9 and 12.

Proposition 14. The function V is upper semi-continuous.

Proof. Fix r ∈ [0,∞) and an open set V ⊂ M such that Vr = V (r) ⊂ V . Since
{Vs / s > r} is a fundamental neighbourhood system for V (r) it follows that
there is s > r such that Vs ⊂ V . Let U = [0, s). Then for each t ∈ U we have
V (t) ⊂ Vs ⊂ V . �

On the other hand in the non-compact case the function V is not lower semi-
continuous at any of the points n and 1

n for n a positive integer. Indeed, suppose

that r is either n or 1
n for n a positive integer. Then from the construction we have

that
⋃

s<r Vs $ Vr so the open set M \
(⋃

s<r Vs

)
is an open subset of M meeting

Vr but no Vs for s < r. Similar comments apply to most cases where M is compact.
Here is a description of an attempt to overcome this. Comments here will relate

to the proofs of Proposition 8 and Theorem 9 but they may be adapted to the
other two categories. In a sense what we want to do is to construct a fundamental
system of neighbourhoods of M \ V1 indexed by an interval of the form (a, 1), and
replacing the neighbourhoods Vr for, say, 1

2 < r < 1 by the complements of the
closures of these neighbourhoods. Somehow we need to continue this process to fill
in the gaps.

We can make the process described in the previous paragraph more precise
as follows. Replace the sets Un in the proof of Proposition 8 by the set {x ∈
M / d(x,M \ V1} and then the handlebodies Xn by handlebodies using these new
open sets. In this way we end up with neighbourhoods Vr for, say, 1

2 < r < 1
that ensure lower semi-continuity at r = 1 but will have lost upper-semicontinuity.
However if at each of the jumps in the sets Vr we remove a small interval as previ-
ously described and then insert neighbourhoods as just described to ensure lower
semi-continuity or as in Proposition 8 to restore upper semi-continuity then we may
hope to obtain a multifunction V : [0,∞) �M that is both lower and upper semi-
continuous. Unfortunately this procedure is doomed to fail as there can be only
countable many mutually disjoint closed intervals used in the process so cannot
cover the interval [0, 1] as otherwise their end points will form a countable, closed,
perfect set, which is impossible in a complete metric space.

This raises the question.

Question 15. Given a relatively compact non-empty open subset V0 of a manifold
Mm such that ∂V0 is a manifold, is it possible to find a family {Vr / r ∈ [0,∞)}
such that each of the following conditions holds?
• each set Vr is relatively compact and open;
• the boundary of each set Vr is an (m− 1)-submanifold of M ;
• M =

⋃
r≥0 Vr;

• for each r ∈ [0,∞) the family {Vs / s > r} is a fundamental system of neigh-
bourhoods of Vr;
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• the multifunction V : [0,∞) � M defined by V (r) = Vr is both lower and
upper semi-continuous.
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