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Abstract. The relationship between the Axiom of Determinacy (AD) and the Axiom of

Turing Determinacy has been open for over 50 years, and the attempts to understand that

relationship have had a profound influence on Set Theory in a variety of ways. The pre-

vailing conjecture is that these two determinacy hypotheses are actually equivalent, and

the main theorem of this paper is that Turing Determinacy implies that every Suslin set is

determined.

1. Introduction

The Axiom of Determinacy (AD) was introduced 60 years ago by Mycielski and Stein-

haus [6] as an alternative to the Axiom of Choice. The modern view is that AD is an axiom

for various inner models of the Universe of Sets, V , which contain all the real numbers (and

all the ordinals). The simplest such inner model is L(R) which is obtained by relativizing

Gödel’s construction of L to the reals, R. As is standard in the theory of AD, we identify

R with ωω, which with the product topology is homeomorphic to the Euclidean space of

irrational numbers. Therefore strictly speaking

L(R) = L(Vω+1)

where Vω+1 = P(Vω), which is the set of all X ⊆ Vω, and where Vω is the union of all the

finite transitive sets.

Thus in the development of the theory of AD, theorems can be viewed as theorems

about inner models, such as L(R) in which AD holds; or as theorems of ZF + AD + DCR,

where DC is the Axiom of Countable Dependent Choice, and DCR is DC restricted to

partial orders on R. The point is that if N is an inner model of V which contains the reals,

then necessarily N � DCR.

Alternatively if

N � ZF + DC

and N � “V = L(P(R))”, then there is a partial order P such that

NP � ZFC

and such that NP adds no new reals. Here L(P(R)), which is really L(Vω+2), is the general-

ization of Gödel’s construction of L to the set of all sets of reals, P(R), and NP denotes the

Cohen extension of N given by P.

Usually the context for the study of AD is ZF + DCR together with the assumption

that V = L(P(R)), and this therefore explains the duality in perspectives (ignoring the

distinction between DC and DCR).

Suppose x, y ∈ R. Then x ≤T y if x is Turing reducible to y in the sense that x Turing

computable with an oracle for y. If x ≤T y and y ≤T x then x and y are Turing equivalent,

and this is an equivalence relation on R.
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For each x ∈ R, the Turing degree of x, denoted [x]T, is the corresponding equiva-

lence class. The set of all Turing degrees, denoted D, is a naturally a partial order where

[x]T ≤T [y]T if x ≤T y.

A Turing cone, is a set X ⊆ D which is of the form

X = {d ∈ D | d0 ≤T d}

for some Turing degree d0, and the Turing cones generate a countably complete filter on

(the subsets of)D.

A striking early application of AD is the observation of Martin that assuming AD, if

X ⊆ D is a set of Turing degrees, then either X or its complement D\X must contain

a Turing cone, see [5] for an overview of the development of the study of AD. Thus

assuming AD, the simplest filter onD is an ultrafilter.

Turing Determinacy is the axiom which simply asserts that the conclusion of Martin’s

observation holds. Thus Turing Determinacy is an elegant and natural variation of AD, and

the main open question is whether in ZF+DCR, Turing Determinacy implies AD. Evidence

that the answer is yes was provided by the following theorem from 1982. Unfortunately

there has been little further progress on the general question of the equivalence of AD with

Turing Determinacy since then.

Theorem 1.1. The following are equivalent.

(1) L(R) � AD.

(2) L(R) � Turing Determinacy. ⊓⊔

The proof of Theorem 1.1 has never been published, and there are now other proofs of

closely related theorems, proved using the modern machinery which has been developed

in the ensuing decades. This has been developed to the point where the actual theorem,

Theorem 1.1, has now been proved by these methods [1]. Thus the original proof became

in some sense more and more irrelevant to the general development of the subject since the

subsequent alternative proofs arguably provided deeper insights.

Our main theorem is the following theorem and the key new feature is that there is

no restriction on the complexity (such as requiring A belong to a canonical inner model

generalizing L(R)) of the sets A ⊆ R to which the theorem applies. The notion that a

set A ⊆ R be Suslin is a fundamental and central notion in the subject of AD, and it is a

transfinite generalization of the notion of an analytic set, [5].

Theorem 1.2 (ZF + DCR). Assume Turing Determinacy. Then every Suslin set is

determined. ⊓⊔

The key result of [4] is the following theorem, and the main theorem of [4] was obtained

as an immediate corollary of this theorem. The proof of Theorem 1.1 used a much more

technical variation of Theorem 1.3, also from [4], and this in part has blocked generalizing

the original proof of Theorem 1.1, in the attempt to obtain further progress on the basic

problem of Turing Determinacy versus AD.

Theorem 1.3 ([4]). The following are equivalent.

(1) L(R) � AD.

(2) L(R) � “Every Suslin set is determined”. ⊓⊔

Thus Theorem 1.1 is an immediate corollary of Theorem 1.2, and this gives an entirely

new proof of Theorem 1.1 which should be more amenable to generalization.

Remark 1.4. By [2], the assumption that every Suslin set is determined is relatively con-

sistent with the existence of a non-principal ultrafilter on N, and so the equivalence in the

conclusion of Theorem 1.3 needs the restriction to a canonical inner model such as L(R).⊓⊔
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2. Turing Determinacy and the Determinacy of Suslin Sets

We fix some conventions and notation. Suppose λ ∈ Ord. A set T is a tree on ω × λ, if

T ⊆ ω<ω × λ<ω

and for each (s, t) ∈ T , dom(s) = dom(t) and

(s|k, t|k) ∈ T

for all k ∈ dom(s). For each s ∈ ω<ω, T s = {t ∈ λ
<ω | (s, t) ∈ T }.

The set of infinite branches of T is denoted [T ], and this is the set of all (x, f ) ∈ ωω×λω

such that

{(x|k, f |k) | k < ω} ⊆ T.

The projection of T , this is denoted p[T ], is the set of x ∈ ωω such that (x, f ) ∈ [T ] for

some f ∈ λω. For each x ∈ ωω,

Tx = ∪
{

Tx|k | k < ω
}

⊆ λ<ω.

Thus Tx is a tree on λ, and x ∈ p[T ] if and only if Tx has an infinite branch.

Finally for each x ∈ p[T ], f T
x is the “left-most” infinite branch of Tx. This is the

lexicographically least element f ∈ λω such that (x, f ) ∈ [T ].

A set A ⊆ ωω is λ-Suslin if there is a tree T on ω × λ, in the above sense, such that

A = p[T ].

Assuming the Axiom of Choice, every set A ⊆ R is λ-Suslin where λ = |R|, but for example

a set A ⊂ R is ω-Suslin if and only if A is an analytic set. Finally, a set A ⊆ ωω is Suslin if

A is λ-Suslin for some λ ∈ Ord.

The first step in the original proof of Theorem 1.1 involved proving the following theo-

rem, and the proof used, in key ways, that every Σ1
2
-set is the projection of a tree T ∈ L.

Note that the hypothesis of Theorem 2.1 must hold in V , if there exists an inner model

N � ZF + Turing Determinacy

such that R ⊂ N and such that Ord ⊂ N. This shift in perspective in quite useful.

Theorem 2.1. Suppose that the following hold where for each x ∈ R, Th
Lω1

[x]

2
is the Σ2-

theory of Lω1
[x].

(i) ω1 is strongly inaccessible in L[x] for all x ∈ R.

(ii) Th
Lω1

[x]

2
is constant on a Turing cone.

Then every Σ1
2
-set is determined. ⊓⊔

Here again there is now a completely different proof of Theorem 2.1 using modern

methods, and in this case it is the core model theory of Jensen and Steel [3]. By [3],

if there is no inner model with a Woodin cardinal then there is an inner model K ⊂ V

such that K is both ∆2-definable in V and in every generic extension of V , and such that

λ+ = (λ+)K for a proper class of limit cardinals λ.

We sketch how one can prove Theorem 2.1 by using the results of Jensen and Steel. Fix

a real x0 such that

Th
Lω1

[x]

2
= Th

Lω1
[x0]

2

for all x ∈ R such that x0 ∈ L[x] and assume toward a contradiction that

Lω1
[x0] � “There is no inner model with a Woodin cardinal”.

Now apply the existence of K in

Lω1
[x0] � ZFC

and consider the Σ2-sentence which expresses:
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“There exists a closed unbounded set C ⊂ ω1 of ordinals all of which have the

same cofinality in K”.

By the generic invariance of K and the fact that K computes λ+ correctly for a proper class

of λ, this Σ2-sentence can be forced over Lω1
[x0] to be true and it can be forced over Lω1

[x0]

to be false, (both by generically adding a real to Lω1
[x0]), which contradicts the choice of

x0.

Here we also use from [3] that if there is no inner model with a Woodin cardinal then

K ∩ Vθ is uniformly definable in Vθ for all uncountable cardinals θ such that θ = |Vθ| (with

a definition which is independent of V).

Therefore

Lω1
[x0] � “There is an inner model with a Woodin cardinal”.

But then Σ1
2
-Determinacy holds in a generic extension of Lω1

[x0] and so it follows that

Σ
1
2
-Determinacy holds in V since Σ1

2
-Determinacy is upwards absolute, see the commnets

on page 862.

This last step uses the following theorem from 1987, and a much stronger version of

this theorem was later proved by Neeman [7].

Theorem 2.2. Suppose δ is a Woodin cardinal and that G ⊂ Coll(ω, δ) is V-generic. Then

V[G] � Σ1
2-Determinacy. ⊓⊔

Our main theorem follows from Theorem 2.4 (stated and proved after the next lemma),

which generalizes Theorem 2.1 to arbitrary trees, T , without making any additional as-

sumptions about the trees. The original proof of Theorem 1.1, required that the tree be

associated to a scaled pointclass (in the sense defined in [5]) and so needed the appropriate

refinement of Theorem 1.3.

The point is that the orignal proof of Theorem 2.1 exploited that the inner models L[x]

have a rich internal structure and this is not true in general for the inner models L[T ][x].

However if the tree T is associated to a scaled pointclass, and assuming enough sets

related to that pointclass are determined, then the inner models L[T ][x] again have a rich

internal structure. This was the approach in the proof of Theorem 1.1.

We need a rather technical lemma and for this lemma we use the following notation.

Suppose that there is a wellordering of H(ω2) of length ω2 which is definable from param-

eters in H(ω2). Then for each set Z ⊂ H(ω2), S Z denotes the set given by the first ω2-many

ordinals η > ω2 such that

Lη
(

H(ω2), Z
)

� ZFC\Replacement.

Note that for each η ∈ S Z , S Z ∩ η is bounded in η and so

S Z ∩ η ∈ Lη
(

H(ω2), Z
)

.

Lemma 2.3 (CH). Suppose ⋄(ω2) holds and is witnessed by a sequence which is definable

from parameters in H(ω2). Suppose

〈Li : i < ω〉

is an increasing sequence of subsets of ω2 such that

|Li| ≤ ω1

for all i < ω. Then there exists a sequence 〈Bi : i < ω〉 of subsets of ω2 such that the

following holds where for each i < ω,

Zi = {(k, α) | i ≤ k < ω and α ∈ Bk} .
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(1) For each k < i < ω, the structure (Li, Lk, ∈) is isomorphic to an initial segment of the

structure
(

S Zi
, S Zk
, ∈
)

.

Proof. Define a subtree T ⊂ 2<ω2 to be a club-full tree if the following hold for some

closed unbounded set C ⊂ ω2.

(1.1) For each α < ω2 and for all s, t ∈ T , if dom(s) = α = dom(t) and if

s↾(C ∩ α) = t↾(C ∩ α)

then s = t.

(1.2) Suppose π : C → {0, 1}. Then for each α ∈ C, there exists s ∈ T such that dom(s) = α

and π↾(C ∩ α) = s↾(C ∩ α).

Thus if T is a club-full tree then T is an (<ω2)-closed subtree of 2<ω2 . Further the

witness C is uniquely specified by T as the set of all α < ω2 such that there exist s, t ∈ T

such that α ∈ dom(s) ∩ dom(t), s↾α = t↾α, and such that s(α) , t(α).

We first prove the following claim.

(2.1) Suppose 〈Tα : α < ω1〉 is a sequence of club-full trees such that that Tβ ⊆ Tα for all

α < β < ω1, and let

T =
⋂

α<ω1

Tα.

Then T is a club-full tree.

For each α < ω2, let Cα be the closed unbounded subset of ω2 which witnesses that

Tα is a club-full tree. Thus Cβ ⊆ Cα for all α < β < ω1 since the witnesses are uniquely

specified as indicated above. Let

C =
⋂

α<ω1

Cα.

We prove C witnesses T is a club-full tree. Fix

π : C → {0, 1} .

We prove by induction on ξ ∈ C that there exists a unique s ∈ T such that

(3.1) dom(s) = ξ,

(3.2) s↾(C ∩ ξ) = π↾(C ∩ ξ).

This is an easy consequence of the definitions. For example, suppose ξ0 is the least

element of C and for each α < ω1, let ξα
0

be the least element of Cα. Thus for each α < ω1,

there exists uniquely sα ∈ Tα such that dom(sα) = ξ
α
0
.

The key point is that for all α ≤ β < ω1, ξα
0
≤ ξ
β

0
and

sβ↾ξ
0
α = sα.

Clearly, one of the following must hold.

(4.1) ξα
0
= ξ0 for all sufficiently large α < ω1.

(4.2) For all α < ω1, ξα
0
< ξ0 and ξ0 = sup

{

ξα
0
| α < ω1

}

.

Suppose (4.1) holds. Then there exists α < ω1 such that sα = sβ for all α < β < ω1, and so

sα ∈ T . Now suppose (4.2) holds and let

s = ∪
{

sα0 | α < ω1

}

.

Thus dom(s) = ξ0 and for all η < ξ0, s↾η ∈ T . Therefore s ∈ T since T is (<ω2)-closed.

This gives existence, and the argument for uniqueness is similar. The induction steps

are essentially the same when ξ ∈ C is not a limit point of C, and if ξ ∈ C is a limit point

of C then the existence and uniqueness of s is immediate by the induction hypothesis since

T is (<ω2)-closed. This proves (2.1)
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Let Θ be the ordertype of ∪ {Li : i < ω} and for each i < ω, let L̂i ⊂ Θ be the image of

Li under the isomorphism of ∪ {Li : i < ω} with Θ.

For each α < ω2, let ηα be the α-th ordinal η such that

Lη(H(ω2)) � ZFC\Replacement.

For each club-full tree T , let [T ] be the set of cofinal branches of T , this is the set of all

b ∈ 2ω2 such that b↾α ∈ T for all α < ω2. Since T is (<ω2)-closed every element s ∈ T can

be extended to a cofinal branch of T .

We note the following.

(5.1) Suppose T is a club-full tree, C ⊆ ω2 witnesses that T is a club-full tree, and that

D ⊂ C is closed and unbounded. Suppose

π : C\D→ {0, 1}

and let T ∗ be the set s ∈ T such that s(α) = π(α) for all α ∈ dom(s) such that α ∈ C\T .

Then T ∗ is a club-full tree with witness D.

We define by induction on α < Θ, a sequence 〈Tα
i

: i < ω〉 of club-full trees such that

the following hold for all α < β < Θ.

(6.1) 〈Tα
i

: i < ω〉 ∈ Lηα (H(ω2))

(6.2) Let iα be the least i such that α ∈ L̂i and suppose 〈bk : k < ω〉 is a sequence such that

bk ∈ [Tα+1
k

] for all k < ω. Then the following hold where for each k < ω, Cα
k

is the

witness that Tα
k

is a club-full tree and Cα+1
k

is the witness that Tα+1
k

is a club-full tree.

a) Cα
k
\Cα+1

k
contains all the successor points of Cα

k
.

b) Let A be the successor points of Cα
k
. If k < iα, then the element of 2ω2 defined

by bk↾A and the order isomorphism of (A, <) with (ω2, <), codes a wellordering

of ω2, of length ηα.

c) 〈bk : k ≥ iα〉 is Lηα (H(ω2))-generic for the partial order given by the infinite

product with full support
∏

iα≤k<ω

Tαk .

(6.3) T
β

i
⊆ Tα

i
for all i < ω.

Fix a sequence 〈σξ : ξ < ω2〉 which witnesses ⋄(ω2) and which is definable from

parameters in H(ω2), and let < be the wellordering of H(ω2) given by 〈σξ : ξ < ω2〉.

Thus for each α < Θ, there is a wellordering of Lηα (H(ω2)) which is uniformly definable

in Lηα (H(ω2)) from 〈σα : α < ω2〉.

We can now uniformly define by recursion 〈Tα
i

: i < ω〉 ∈ Lηα (H(ω2)) to be the least

sequence which satisfies the requirements given
(

〈T
ξ

i
: i < ω〉 : ξ < α

)

The only issue is at the successor steps α + 1, and defining

〈Tα+1
k : iα ≤ k < ω〉.

But here one can use the ⋄(ω2)-sequence and a bijection

F : ω2 → Lηα (H(ω2))

with F ∈ Lηα+1
(H(ω2)), to guess both the sequence of branches and ξ < ω2, and then refine

the trees 〈Tα
k

: iα ≤ k < ω〉 to ensure that if F(ξ) is an open-dense set in the product partial

order
∏

iα≤k<ω

Tαk
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then the filter given by 〈bk : iα ≤ k < ω〉 meets this open-dense set.

We now give the details. Fix a surjection

F : ω2 → Lηα (H(ω2))

with F ∈ Lηα+1
(H(ω2)).

Working in Lηα+1
(H(ω2)), we define a decreasing sequence

〈Cη : η < ω2〉

of closed unbounded subsets of ω2 and a sequence

〈S
η

k
: iα ≤ k < ω, η < ω2〉

of club-full trees, by induction on η < ω such that the following hold.

(7.1) For all η < ξ < ω2, Cξ ∩ η = Cη ∩ η.

(7.2) For all η < ω2 and for all iα ≤ k < ω, S
η

k
⊆ Tα

k
and Cη witnesses that S

η

k
is club-full.

(7.3) For all η < ξ < ω2 and for all iα ≤ k < ω, S
ξ

k
⊆ S

η

k
and

S
ξ

k
∩ {0, 1}η = S

η

k
∩ {0, 1}η .

(7.4) For all η < ω2, 〈Cξ : ξ < η〉 ∈ Lηα (H(ω2)).

(7.5) For all η < ω2, 〈S
ξ

k
: iα ≤ k < ω, ξ < η〉 ∈ Lηα (H(ω2)).

Let C0 be the limit points of the closed unbounded set ∩
{

Cα
k
| iα ≤ k < ω

}

and for each

iα ≤ k < ω1, let S 0
k

be the set of all p ∈ Tα
k

such that p(ξ) = 0 for all ξ ∈ Cα
k
\C0.

We continue by induction on γ < ω2 to define

〈Cη : η < γ〉

〈S
η

k
: iα ≤ k < ω, η < γ〉

We can reduce to case that σγ guesses
(

〈bk↾γ : iα ≤ k < ω〉, ξ
)

and that

(8.1) γ ∈ ∩
{

Cη | η < γ
}

,

(8.2) bk↾γ ∈ ∩
{

S
η

k
| η < γ

}

for all iα ≤ k < ω.

(8.3) ξ < γ and F(ξ) is open-dense in
∏

iα≤k<ω Tα
k

.

Otherwise, we define

Cγ = ∩
{

Cη | η < γ
}

and for each iα ≤ k < ω, we define

S
γ

k
= ∩
{

S
η

k
| η < γ

}

.

Choose the <-least sequence

〈(b0
k, b

1
k) : iα ≤ k < ω〉 ∈ H(ω2)

such that the following hold.

(9.1) b0
k
↾(γ + 1) = (bk↾γ)

⌢0 and b1
k
↾(γ + 1) = (bk↾γ)

⌢1.

(9.2) For all h : {k < ω | iα ≤ k} → {0, 1},

〈b
h(k)

k
: iα ≤ k < ω〉 ∈ F(ξ).
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There are only ω1-many possibilities for h since CH holds and so 〈(b0
k
, b1

k
) : iα ≤ k < ω〉

exists.

Now define

Cγ =
(

∩
{

Cη ∩ γ | η < γ
} )

∪ {γ} ∪
(

C0\(θ + 1)
)

where θ = sup
{

dom(b0
k
), dom(b1

k
) | iα ≤ k < ω

}

.

For each iα ≤ k < ω, define S
γ

k
to be the set of

p ∈ ∩
{

S
η

k
| η < γ

}

such that if dom(p) > γ then the following hold where

C = ∩
{

Cη | η < γ
}

.

(10.1) If p↾γ = bk and p(γ) = 0 then b0
k
⊆ p and p(ξ) = 0 for all ξ ∈ (C0\C)\dom(b0

k
) such

that ξ ∈ dom(p).

(10.2) If p↾γ = bk and p(γ) = 1 then b1
k
⊆ p and p(ξ) = 0 for all ξ ∈ (C0\C)\dom(b1

k
) such

that ξ ∈ dom(p).

(10.3) If p↾γ , bk then p(ξ) = 0 for all ξ ∈ (C0\C) ∩ dom(p) such that ξ > γ.

Note that Cγ and 〈S
γ

k
: iα ≤ k < ω〉 are uniformly definable from the sequences

〈Cη : η < γ〉

and

〈S
η

k
: iα ≤ k < ω, η < γ〉

and an element of H(ω2) (in the construction given above, 〈(b0
k
, b1

k
) : iα ≤ k < ω〉 is that

element).

Thus for all γ < ω2, the sequences

〈Cη : η ≤ γ〉

and

〈S
η

k
: iα ≤ k < ω, η ≤ γ〉

are definable in the structure
(

H(ω2),C0, 〈S
0
k : iα ≤ k < ω〉

)

from an element of H(ω2). Therefore both sequences are elements of Lηα (H(ω2)) as re-

quired.

This proves the existence of
(

〈Tαi : i < ω〉 : α < Θ〉
)

satisfying (6.1)–(6.3).

For each i < ω let

Ti =

⋂

α<Θ

Tαi .

Thus each i < ω, Ti is a club-full tree. Therefore there exists a sequence

〈bi : i < ω〉

such that for all i < ω, bi ∈ 2ω2 and bi is a cofinal branch of Ti. For each i < ω, let

Bi = {α < ω2 | bi(α) = 1} .

We verify 〈Bi : i < ω〉 witnesses that the lemma holds.

For each i < ω, let

Zi = {(k, α) | i ≤ k < ω and α ∈ Bk} .

We must show
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(11.1) For each k < i < ω, the structure (Li, Lk, ∈) is isomorphic to an initial segment of the

structure
(

S Zi
, S Zk
, ∈
)

.

To prove (11.1), we simply have to show

(12.1) For each k < ω,
{

ηα | α ∈ L̂k

}

is an initial segment of S Zk
.

We give the argument for k = 0. Note that for all ξ > ω2,

Lξ(H(ω2), Z0) = Lξ(H(ω2), 〈bk : k < ω〉).

Fix α < Θ. If α ∈ L̂0 then 〈bk : k < ω〉 is Lηα (H(ω2))-generic for the product partial order
∏

0≤k<ω

Tαk .

Therefore

Lηα (H(ω2), Z0) � ZFC\Replacement

and so ηα ∈ S Z0
. Now suppose that α < L̂0 (and so iα > 0). Then there is a wellordering of

ω2 of length ηα which is definable in

(H(ω2), b0, A)

where A is the set of successor points of Cα
0

and Cα
0

is the closed unbounded subset of ω2

which witness that Tα
0
∈ Lηα (H(ω2)) is club-full, see (6.2)(b). Thus

Lηα(H(ω2), Z0) 6� ZFC\Replacement,

and so ηα < S Z0
. The proof of (12.1) for k , 0 is identical. ⊓⊔

Theorem 2.4. Suppose λ ∈ Ord, T is a tree on ω × λ, and that the following hold where

for each x ∈ R, Th
L[T ][x]

2

(

T, ωV
1

)

is the Σ2-theory of L[T ][x] with parameter (T, ωV
1

).

(i) ω1 is strongly inaccessible in L[T ][x] for all x ∈ R.

(ii) Th
L[T ][x]

2

(

T, ωV
1

)

is constant on a Turing cone.

Then p[T ] is determined.

Proof. We first assume in addition to the hypothesis of the theorem that the following

hold.

(1.1) For some x ∈ R, every y ∈ R is L[T ][x]-generic for some partial order P ∈ L[T ][x]

such that P is countable in V .

(1.2) There exists an L[T ](R)-generic filter

G ⊂ Coll(ω1,R)

such that V = L[T ](R)[G].

We prove that p[T ] is determined and:

(2.1) Either Player II has a winning strategy in the game p[T ], or Player I has a winning

strategy in the game p[T ], which is ∆2-definable from T .

For each x ∈ R, let σx = L[T ][x]∩R, and let ThV
2 (T, σx, ω1) be the Σ2-theory of V with

parameter (T, σx, ω1).

Thus ThV
2 (T, σx, ω1) is constant on a Turing cone, and we fix x0 ∈ R such that

(3.1) For all x ∈ R, if x0 ≤T x then

ThV
2 (T, σx, ω1) = ThV

2 (T, σx0
, ω1).

Thus for all x ∈ R such that x0 ≤T x, (1.1) holds for x.

We first prove the following.

(4.1) L[T ][x0] � CH.

(4.2) L[T ][x0] ∩ H(ω1) � GCH.
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Let G0 ⊂ ω
L[T ][x0 ]

1
be L[T ][x0]-generic where the partial order is by initial segments

ordered by extension. Thus

L[T ][x0][G0] � CH

and ω
L[T ][x0 ]

1
= ω

L[T ][x0 ][G0]

1
.

Let

〈τα : α < ω
L[T ][x0 ][G0 ]

1
〉 ∈ L[T ][x0]

be a sequence of infinite subsets of ω such that for all α < β < ω
L[T ][x0 ][G0 ]

1
, τα∩τβ is finite.

Using the partial order for Solovay’s almost disjoint forcing, let y ⊂ ω be L[T ][x0][G0]-

generic such that

G0 =

{

α < ω
L[T ][x0 ][G0 ]

1
| y ∩ τα is finite

}

.

Thus

L[T ][x0][G0][y] = L[T ][x0][y]

and

L[T ][x0][y] � CH.

But by the choice of x0, Th
L[T ][x0]

2

(

T, ωV
1

)

= Th
L[T ][x0 ,y]

2

(

T, ωV
1

)

and this proves (4.1).

Let γ < ω1 be a cardinal of L[T ][x0] and now let G0 ⊂ Coll(ω, γ) be a filter which is

L[T ][x0]-generic. Then there exists y ∈ R such that

L[T ][x0][G0] = L[T ][y]

and so by (4.1) and since Th
L[T ][x0]

2

(

T, ωV
1

)

= Th
L[T ][y]

2

(

T, ωV
1

)

, necessarily

L[T ][y] � CH.

This proves (4.2).

We next prove the following, and the proof is similar to the proof of (4.1)–(4.2).

(5.1) There is a wellordering of H(ω2)L[T ][x0 ] of length ω
L[T ][x0 ]

2
which is definable in

H(ω2)L[T ][x0 ] from parameters.

(5.2) L[T ][x0] � ⋄(ω2) and this is witnessed by a sequence

〈Zα : α < ω
L[T ][x0 ]

2
〉

which is definable in H(ω2)L[T ][x0 ] from parameters.

Of course (5.2) implies (5.1) but we shall achieve (5.2) by achieving a very strong form of

(5.1).

We need a definition from the first edition of [8], see Definiton 8.15 in [8]. Suppose κ is

an uncountable cardinal κ. Then Strong Condensation holds for H(κ) if there is a bijection

ρ : κ→ H(κ)

such that for all countable

X ≺ (H(κ), ρ),

ρX ⊂ ρ where ρX is the image of ρ ∩ X under the transitive collapse of X.

By the main theorem of Wu [10], if CH holds then there is a partial order P such that if

G ⊂ P is V-generic then the following hold.

(6.1) ωV
1
= ω

V[G]

1
and ωV

2
= ω

V[G]

2
.

(6.2) V[G] � “ Strong Condensation holds for H(ω2)”.
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Thus in V , and applying Wu’s theorem in

L[T ][x0] ∩ H(ω1) � ZFC + GCH,

there exists G0 such that the following hold.

(7.1) ω
L[T ][x0 ]

1
= ω

L[T ][x0 ][G0 ]

1
and ω

L[T ][x0 ]

2
= ω

L[T ][x0 ][G0 ]

2
.

(7.2) L[T ][x0][G0] � “ Strong Condensation holds for H(ω2)”.

We claim:

(8.1) Suppose H is L[T ][x0][G0]-generic for some partial order

P̂ ∈ L[T ][x0][G0] ∩ H(ω1)

and that

(ω1)L[T ][x0 ][G0]
= (ω1)L[T ][x0][G0 ][H].

Then

H(ω2)L[T ][x0 ][G0]

is definable from parameters in H(ω2)L[T ][x0][G0 ][H].

Fix a bijection

ρ : ω
L[T ][x0 ][G0 ]

2
→ H(ω2)L[T ][x0][G0 ]

which witnesses in L[T ][x0][G0] that Strong Condensation holds for H(ω2). Then for each

α < ω
L[T ][x0 ][G0 ]

2
,

ρ↾α is uniformly definable from ρ↾ω
L[T ][x0 ][G0]

1
in H(ω2)L[T ][x0][G0 ][H] as the only function

with domain α which satisfies the condensation condition relative to ρ↾ω
L[T ][x0 ][G0 ]

1
.

If

(ω2)L[T ][x0][G0 ]
= (ω2)L[T ][x0 ][G0][H]

then this immediately implies (8.1), and if

(ω2)L[T ][x0][G0 ] < (ω2)L[T ][x0 ][G0][H]

then this again implies (8.1) by using the parameter

p =
(

ρ↾ω
L[T ][x0 ][G0 ]

1
, (ω2)L[T ][x0][G0 ]

)

.

This proves (8.1).

Fix a sequence 〈τα : α < ω
L[T ][x0 ][G0]

2
〉 such that

(9.1) 〈τα : α < ω
L[T ][x0 ][G0]

2
〉 is definable from parameters in H(ω2)L[T ][x0 ][G0].

(9.2) For all α < ω
L[T ][x0 ][G0 ]

2
, τα ⊂ ω

L[T ][x0 ][G0]

1
and τα is cofinal in ω

L[T ][x0 ][G0 ]

1
.

(9.3) For all α < β < ω
L[T ][x0 ][G0 ]

2
, τα ∩ τβ is bounded in ω

L[T ][x0 ][G0 ]

1
.

Let h0 ⊂ ω
L[T ][x0 ][G0 ]

2
be an L[T ][x0][G0]-generic set where the partial order is by initial

segments ordered by extension. Thus

L[T ][x0][G0][h0] � ⋄(ω2).

By Solovay’s almost disjoint forcing again, let

h1 ⊂ ω
L[T ][x0 ][G0 ]

1

be L[T ][x0][G0]-generic such that

h0 =

{

α < ω
L[T ][x0 ][G0]

2
| h1 ∩ τα is bounded in ω

L[T ][x0 ][G0 ]

1

}

.

Thus

L[T ][x0][G0][h0][h1] = L[T ][x0][h1]
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and further h0 is definable from parameters in H(ω2)L[T ][x0][h1].

Therefore it follows that

L[T ][x0][h1] � ⋄(ω2)

and further, this is witnessed by a sequence which is definable from parameters in

H(ω2)L[T ][x0 ][h1].

Finally let

〈τ̂α : α < ω
L[T ][x0 ][G0 ]

1
〉 ∈ L[T ][x0][G0]

be a sequence of infinite subsets of ω such that for all α < β < ω
L[T ][x0 ][G0]

1
, the set τ̂α ∩ τ̂β

is finite. By Solovay’s almost disjoint forcing one last time, let y ⊂ ω be L[T ][x0][G0][h1]-

generic such that

h1 =

{

α < ω
L[T ][x0 ][G0]

1
| y ∩ τ̂α is finite

}

.

Thus

L[T ][x0][G0][h1][y] = L[T ][x0][h1][y] = L[T ][x0][y]

and since the partial order for which y is generic is ccc and has cardinality ω
L[T ][x0 ][h1]

1
in

L[T ][x0][h1], necessarily

L[T ][x0][y] � ⋄(ω2)

and further this is witnessed by a sequence which is definable from parameters in

H(ω2)L[T ][x0 ][y].

Thus putting everything together the following hold in L[T ][x0][y].

(10.1) There is a wellordering of H(ω2) of length ω2 which is definable from parameters in

H(ω2).

(10.2) ⋄(ω2) holds and this is witnessed by a sequence which is definable from parameters in

H(ω2).

But by the choice of x0,

Th
L[T ][x0]

2

(

T, ωV
1

)

= Th
L[T ][x0 ,y]

2

(

T, ωV
1

)

and this proves (5.1)–(5.2).

Let θ be least such that T ∈ Vθ and such that θ = |Vθ|, and for each x ∈ R, let

ThVθ
ω (T, σx)

be the theory of Vθ with a constant for (T, σx).

LetD0 be the set of all [x]T ∈ D such that

ThVθ
ω (T, σy) = ThVθ

ω (T, σx0
)

for all [y]T such that x ≤T y. ThusD0 is ∆2-definable in V from T and by the choice of x0,

D0 contains all [x]T such that x0 ≤T x.

For each [x]T ∈ D0, let S x be the set given by the firstω
L[T ][x]

2
many ordinals ξ > ω

L[T ][x]

2

such that

Lξ
(

H(ω2)L[T ][x]
)

� ZFC\Replacement.

Thus if [y]T = [x]T then S x = S y, and for each ξ ∈ S x, S x ∩ ξ is bounded in ξ.

Define Z ⊆ T to be T -full if for each (s, t) ∈ Z, there exists w ∈ p[T ] such that s ⊂ w

and such that
{

(w|k, f T
w |k) | k < ω

}

⊆ Z,

recalling that f T
w is the left most branch through Tw. Note that the T -full subsets of T are

closed under arbitrary unions.
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For each T -full set Z, let T z be the transitive collapse of Z and letΘZ be the image of the

ordinals under the transitive collapse of Z. Thus ΘZ is just the ordinal which is isomorphic

to ordertype of the set of ordinals occurring in Z and TZ is the tree on ω × ΘZ given by Z.

We claim:

(11.1) Suppose Z,W are each T -full and countable. Suppose

T Z
= T W .

Then Z = W.

Let π : T Z → T invert the transitive collapse of Z. Then since Z is T -full, π is pointwise

minimal among all possible tree embeddings ρ : T Z → T such that ρ is induced by an

order preserving function

e : ΘZ → Ord,

and the pointwise minimality is relative to the order (s0, t0) ≤ (s1, t1) if s0 = s1 and

t0 ≤KB t1, where ≤KB be the Kleene-Brouwer order on Ord<ω. This uniquely specifies

Z from TZ and so necessarily Z = W.

For each [x]T ∈ D0, let ΣT
x be the union of all Z ⊂ T such that the following hold.

(12.1) Z ∈ L[T ][x] and Z is countable in L[T ][x].

(12.2) Z is T -full.

Suppose [x]T ∈ D0. The following claims (13.1)–(13.2) are immediate from (1.1)–(1.2)

and (11.1), and imply the third claim, (13.3).

(13.1) Suppose Z is T -full, Z is countable, and that T Z ∈ L[T ][x]. Then Z ∈ L[T ][x].

(13.2) Suppose that Z ⊆ T , Z ∈ L[T ][x], and Z is countable. Let Zo be the maximum T -full

set which is contained in Z. Then Zo ∈ L[T ][x].

(13.3) Suppose x ≤T y and L[T ][y] is a forcing extension of L[T ][x] such that for all σ ⊂ Ord,

if σ is countable in L[T ][y] then there exists σ∗ ⊂ Ord such that σ∗ ∈ L[T ][x], σ∗ is

countable in L[T ][x], and such that σ ⊆ σ∗. Then

Σ
T
x = Σ

T
y .

For each [x]T ∈ D0, let T [x] be the transitive collapse of ΣT
x . Thus by (4.1), our sim-

plifying assumptions (1.1)–(1.2), and the definition ofD0: ΣT
x is uniformly definable in Vθ

from (σx, T ). This implies

Σ
T
x ∈ L[T ][x]

and so by (11.1) and since CH holds in L[T ][x], T [x] ∈ H(ω2)L[T ][x].

For each x, y ∈ ωω with x ∈ D0, and for each 0 < n < ω, let

T [x]y↾n = ∪
{

T [x]y|m | 0 < m ≤ n
}

and as above, let ≤KB be the Kleene-Brouwer order on Ord<ω.

We now define the key auxiliary games G(x) for p[T ] ∩ L[T ][x] where x ∈ D0. In the

i-th round, Player I plays mi ∈ ω and Player II plays (ni, ti) ∈ ω × ω
ω.

The rules are as follows where y ∈ ωω is the element such that y(2k) = mk and

y(2k + 1) = nk, for all k < ω, and Player II wins the run of the game if the rules are

satisfied.

(14.1) For each i < ω, [ti]T ∈ D0 and ti ∈ L[T ][x].

(14.2) For each i < ω, ω
L[T ][ti ]

1
= ω

L[T ][x]

1
, ω

L[T ][ti ]

2
= ω

L[T ][x]

2
, and T [ti] = T [x].

(14.3) For each 0 < k < i, ti ∈ L[T ][tk] and the structure
(

T [t0]y↾i, T [t0]y↾k, ≤KB

)

is isomor-

phic to an initial segment of the structure
(

S ti , S tk , ∈
)

.
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Note that for each 0 < i < ω, the last condition (14.3) depends only on previous plays.

Thus this game is an open game for Player I and so it is determined. By (1.1)–(1.2), and

since [x]T ∈ D0, G(x) is ∆2-definable in L[T ][x] from (T, ωV
1

).

If Player II has a winning strategy in G(x) for some [x]T ∈ D0, then trivially Player II

has a winning strategy in L[T ][x] for the game given by p[T ] ∩ L[T ][x] since

p[T ] ∩ L[T ][x] = (p[S ])L[T ][x]

where S = T [x]. Therefore by absoluteness, that winning strategy for Player II must be a

winning strategy in V for the game p[T ]. Thus we can reduce to the case that Player I has

a winning strategy in G(x) for all [x]T ∈ D0.

We now come to the key technical claim in the proof. Suppose x ∈ D0 and that

〈Li : 0 < i < ω〉 ∈ L[T ][x]

is an increasing sequence of subsets of ω
L[T ][x]

2
such that

|Li|
L[T ][x] ≤ ω

L[T ][x]

1

for all 0 < i < ω. The claim is that there exists z ∈ R and a sequence 〈zi : 0 < i < ω〉 such

that the following hold.

(15.1) x ≤T z.

(15.2) ω
L[T ][x]

1
= ω

L[T ][z]

1
, ω

L[T ][x]

2
= ω

L[T ][z]

2
, and T [x] = T [z].

(15.3) 〈zi : 0 < i < ω〉 ∈ L[T ][y] and x ≤T zi ≤T zk ≤T z, for all 0 < k < i < ω.

(15.4) For each 0 < k < i, the structure (Li, Lk, ∈) is isomorphic to an initial segment of the

structure
(

S zi
, S zk
, ∈
)

.

By Lemma 2.3, and setting L0 = L1, there exists a sequence 〈Bi : i < ω〉 ∈ L[T ][x] of

subsets of ω
L[T ][x]

2
such that the following holds where for each i < ω,

Zi = {(k, α) | i ≤ k < ω and α ∈ Bk}

and where S Zi
is set given by the first ω

L[T ][x]

2
many ordinals ξ > ω

L[T ][x]

2
such that

Lξ
(

H(ω2)L[T ][x] , Zi

)

� ZFC\Replacement.

(16.1) For each 0 < k < i, the structure (Li, Lk, ∈) is isomorphic to an initial segment of the

structure
(

S Zi
, S Zk
, ∈
)

.

Fix a sequence 〈σα : α < ω
L[T ][x]

2
〉 of cofinal subsets of ω

L[T ][x]

1
such that

(17.1) 〈σα : α < ω2〉 is definable from parameters in H(ω2)L[T ][x].

(17.2) σα ∩ σβ is bounded in ω
L[T ][x]

1
for all α < β < ω

L[T ][x]

2
.

Force over L[T ][x] with the countable product with full support of almost disjoint forc-

ing to get a sequence 〈B̂i : i < ω〉 of subsets of ω
L[T ][x]

1
such that for all i < ω

Bi =

{

α < ω
L[T ][x]

2
| B̂i ∩ σα is bounded in ω

L[T ][x]

1

}

.

Thus defining for each i < ω,

Ẑi =

{

(k, α) | i ≤ k < ω and α ∈ B̂k

}

,

it follows that for each i < ω, S Zi
is the set given by the first ω

L[T ][x]

2
many ordinals

ξ > ω
L[T ][x]

2
such that

Lξ
(

H(ω2)L[T ][x] , Ẑi

)

� ZFC\Replacement.

Now we code down to subsets of ω. Fix a sequence 〈σ̂α : α < ω
L[T ][x]

1
〉 of infinite

subsets of ω such that
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(18.1) 〈σ̂α : α < ω2〉 ∈ L[T ][x].

(18.2) σ̂α ∩ σ̂β is finite for all α < β < ω
L[T ][x]

1
.

Now force over L[T ][x][〈B̂i : i < ω〉] with the countable product with finite support of

almost disjoint forcing to get a sequence 〈bi : i < ω〉 of subsets of ω such that for all i < ω

B̂i =

{

α < ω
L[T ][x]

1
| bi ∩ σ̂α is finite

}

.

Thus defining for each i < ω,

zi = {(k,m) | i ≤ k < ω and m ∈ bk} × {n < ω | n ∈ x}

and viewing zi ∈ R, it follows that for each i < ω, S Zi
is the set given by the first ω

L[T ][x]

2

many ordinals ξ > ω
L[T ][x]

2
such that

Lξ
(

H(ω2)L[T ][x], zi

)

� ZFC\Replacement;

in other words, for each i < ω, S zi
= S Zi

.

Thus setting z = z0, z and 〈zi : 0 < i < ω〉 are as required provided

T [x] = T [z].

But L[T ][x] is closed under ω-sequences in L[T ][x][〈B̂i : i < ω〉] and L[T ][z] is a ccc

forcing extension of L[T ][x][〈B̂i : i < ω〉]. Therefore since [x]T ∈ D0,

T [x] = T [z]

by (13.3). This proves the key technical claim.

For each s ∈ ω<ω, and for each [x]T ∈ D0, if dom(s) is even let G(x)s be the game where

the condition (14.3) is replaced by the condition

• For each 0 < k < i, the structure
(

T [t0]z↾(n + i), T [t0]z↾(n + k), ≤KB

)

is isomorphic to

an initial segment of the structure
(

S ti , S tk , ∈
)

;

where z = s⌢y and n = dom(s).

Thus if s = ∅ then G(x)s = G(x). Note the following and for (19.1) we appeal to our

simplifying assumptions (1.1)-(1.2).

(19.1) For each x ∈ D0 and for each s ∈ ω<ω, if dom(s) is even then G(x)s is uniformly

∆2-definable in L[T ][x] from (T, κ, s) where κ = ωV
1

.

(19.2) Suppose p is a legal (rules are satisfied) position in G(x) of even nonzero length (so it

is Player I’s turn to move and Player I has not already won) and s is the integer part of

p. Suppose that ti is the last real played by Player II. Then the following are equivalent.

a) p is a winning position for Player I in G(x).

b) Player I has a winning strategy in G(ti)s.

We use (19.2) to define a strategy F∞ for Player I. For each s ∈ ω<ω such that dom(s)

is even, and for each x ∈ R with x0 ≤T x, if Player I has a winning strategy in in game

G(x)s, let F x
s be the canonical winning strategy (where Player I plays the least k < ω which

decreases the rank of the resulting position in G(x)s if Player I has not already won); and

if Player II has a winning strategy in the game G(x)s, let F x
s be the constant function with

value 0.

Notice that for all s ∈ ω<ω and for all x ∈ R, if dom(s) is even and x0 ≤T x, then by

(3.1), F x
s is independent of the choice of x and in particular,

(20.1) F x
s (s) = F

x0
s (s).

This defines a strategy F∞ for Player I, where

F∞(s) = F x0
s (s)

for all s ∈ ω<ω such that dom(s) is even.

If F∞ is a winning strategy for Player I in the game given by p[T ] then we are done,

and so we can reduce to the case that for some y ∈ R,



860 W. HUGH WOODIN

(21.1) y < p[T ],

(21.2) For all k < ω, y(2k) = F∞
(

y↾2k
)

.

Fix x1 ∈ R such that x0 ≤T x1 and such that y ∈ L[T ][x1]. Thus

y < p[T [x1]].

We now use the key technical claim (see page 858) to construct z ∈ R with x0 ≤T z and

a play against Fz
∅

which defeats Fz
∅
.

Since y < p[T [x1]], the tree
(

T [x1]
)

y has no infinite branch and so in L[T ][x1], the linear

order on
(

T [x1]
)

y given by the Kleene-Brouwer order is a wellordering with length θy such

that θy < ω
L[T ][x1 ]

2
. For each 0 < n < ω, let Ln ⊆ θy be the image of

(

T [x1]
)

y↾n under the

isomorphism

π :
(

(

T [x1]
)

y,≤KB

)

� (θy, ∈)

By that claim, there exists z ∈ R and a sequence 〈zi : 0 < i < ω〉 such that the following

hold where we set z0 = z.

(22.1) x1 ≤T z.

(22.2) ω
L[T ][x1 ]

1
= ω

L[T ][z]

1
, ω

L[T ][x1 ]

2
= ω

L[T ][z]

2
, and T [x1] = T [z].

(22.3) 〈zi : i < ω〉 ∈ L[T ][z] and x1 ≤T zi ≤T zk ≤T z, for all k < i < ω.

(22.4) For each 0 < k < i, the structure (Li, Lk, ∈) is isomorphic to an initial segment of the

structure
(

S zi
, S zk
, ∈
)

.

But then playing 〈(y(2i + 1), zi) : i < ω〉 against the canonical winning strategy for

Player I in in the game G(z) defeats that strategy.

The point is that by induction on i < ω, it follows from (19.2), (20.1), and the definition

of F x
s , (and using in particular that x1 ≤T zi ≤T zk ≤T z, for all k < i < ω ), that for each

i < ω, that strategy must play y(2i).

This is a contradiction, and this proves that F∞ is a winning strategy for Player I in the

game p[T ]. Finally, F∞ is uniformly definable in Vθ+1 from (T, [x]T) for any x ∈ R such

that x0 ≤T x, and so F∞ is ∆2-definable from T .

This finishes the proof of (2.1), and the proof of the theorem under the simplifying

assumptions (1.1)–(1.2).

We now use this special case and prove the theorem without assuming (1.1)–(1.2). Fix

x0 ∈ R such that for all x ∈ R, if x0 ≤T x then

Th
L[T ][x]

2

(

T, ωV
1

)

= Th
L[T ][x0 ]

2

(

T, ωV
1

)

Let G0 ⊂ Coll(ω, <ω1) be V-generic and let G ⊂ ω1 be a L[T ][x0][G0]-generic subset of

ω1 where the partial order is the partial order of bounded subsets of ω1 in L[T ][x0][G0]

ordered by extension.

LetRG0
= R

L[T ][x0 ][G0 ]. Thus L[T ][x0](RG0
) is a symmetric forcing extension of L[T ][x0]

for Coll(ω, <κ) where κ = ωV
1

and so κ is strongly inaccessible in L[T ][x0]. Further G is

L[T ][x0](RG0
)-generic and

L[T ][x0][G] = L[T ][x0](RG0
)[G].

Thus L[T ][x0][G] is a homogenous forcing extension of L[T ][x0] for a partial order which

is ∆2-definable in L[T ][x0] with parameter ωV
1

.

Therefore by the choice of x0, the definability of forcing, and since ω1 is strongly inac-

cessible in L[T ][x0], it follows that the hypothesis of the theorem holds in L[T ][x0][G].

But (1.1)–(1.2) hold in L[T ][x0][G] and so in L[T ][x0][G], p[T ] is determined. Further

by (2.1) either there is a a winning strategy for Player II, or there is a winning strategy for

Player I which is ∆2-definable in L[T ][x0][G] with parameter T .
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We first suppose that there is a winning strategy for Player II. Then in V , there exists

α < ω1 and an L[T ][x0]-generic filter g ⊂ Coll(ω, <α) such that in L[T ][x0][g] there is a

winning strategy F for Player II in the game p[T ]∩ L[T ][x0][g]. But then by absoluteness,

F must be a winning strategy in V for Player II in the game p[T ].

Finally suppose that in L[T ][x0][G], there is a winning strategy F for Player I such that

F is ∆2-definable in L[T ][x0][G] with parameter T . This implies that the strategy F must

belong to L[T ][x0] and further that F is ∆2-definable in L[T ][x0] with parameter (T, κ)

where

κ = ω
L[T ][x0 ][G]

1
= ωV

1 ,

But in V and by the choice of x0, for all x ∈ R, if x0 ≤T x then

Th
L[T ][x]

2

(

T, ωV
1

)

= Th
L[T ][x0 ]

2

(

T, ωV
1

)

.

Therefore it follows that in V , for all x ∈ R, if x0 ≤T x then in L[T ][x], F is a winning

strategy for Player I in the game p[T ] ∩ L[T ][x]. This trivially implies that in V , F is a

winning strategy for Player I in the game p[T ]. ⊓⊔

3. The Next Questions

Given the results of this paper, the following questions are the natural incremental ques-

tions in the general program of the analysis of Turing Determinacy and its relationship to

AD.

The notion that a set A ⊆ R be an ∞Borel set is a transfinite generalization of the notion

of a borel set. Assuming Turing Determinacy, many sets A ⊆ R can be verified to be ∞Borel

sets, and further one obtains an elegant characterization of the ∞Borel sets. Theorem 3.1

was proved as a precursor to Theorem 1.1, and arguably provided strong evidence that at

least assuming V = L(R), Turing Determinacy is equivalent to AD.

The reason is that in ZF, if a set A ⊆ R is ∞Borel and there is no uncountable sequence

of distinct reals, then A is Lebesgue measurable, A has the property of Baire, and more

genrally A has all the usual regularity properties. Thus as a corollary of Theorem 3.1,

assuming Turing Determinacy, every set in L(R) is Lebesgue measurable etc., verifying

that in L(R), Turing Determinacy suffices to prove many of the consequences of AD.

Theorem 3.1 (ZF+DCR). Assume Turing Determinacy and that A ⊆ R. Then the following

are equivalent.

(1) A is an ∞Borel set.

(2) There exists a set S ⊂ Ord such that A ∈ L(S ,R). ⊓⊔

By Theorem 3.1, a positive answer to either of the following questions would immedi-

ately yield a very strong generalization of the equivalence of Turing Determinacy and AD

in L(R).

Question 3.2 (ZF + DCR). Assume Turing Determinacy. Must every ∞Borel set be deter-

mined?

The second question seems likely to be a more general question (which raises yet an-

other interesting question) and the formulation involves the notion of an ∞Borel code S for

an ∞Borel set A.

This is a transfinite generalization of the notion of a borel code for a borel set, and
∞Borel codes can be viewed, depending on the presentation, as trees on ω × λ for some

λ ∈ Ord, by generalization the definition of p[T ], or simply as sets S ⊂ Ord which code

transfinite words in the free Boolean algebra on ω-many generators (to be interpreted by

the basic open subsets of ωω given by ω<ω).
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Whichever way one chooses to define the notion of an ∞Borel code, it really does not

affect the answer to the following question.

Question 3.3 (ZFC). Suppose that S is an ∞Borel code for A ⊆ R and for each x ∈ R

and for each θ ∈ Ord, let Th
L[S ][x]

2

(

S , θ
)

be the Σ2-theory of L[S ][x] with parameter (S , θ).

Suppose that the following hold.

(i) ω1 is strongly inaccessible in L[S ][x] for all x ∈ R.

(ii) For each θ ∈ Ord, Th
L[S ][x]

2

(

S , θ
)

is constant on a Turing cone.

Must A ∩ L[S ][x] be determined in L[S ][x] on a Turing cone?

Finally, coming full circle, another basic question concerns Σ1
2
-Turing Determinacy it-

self, but in the context of Second Order Number Theory, which is far too weak a the-

ory in which to implement any of the arguments here, or from 1982, for obtaining Σ1
2
-

Determinacy.

This problem is mostly resolved in [9] which is a sequel to this paper, and the main

theorem is that in Second Order Number Theory, if one adds a Cohen real then ∆1
2
-Turing

Determinacy holds in N[c] if and only if Σ1
2
-Determinacy holds in N[c].

The proof requires first proving Martin’s theorem [5] on the equivalence of ∆1
2
-

Determinacy with Σ1
2
-Determinacy, but again working in just Second Order Number The-

ory. The point here is that Martin’s proof does not obviously work in just Second Order

Number Theory since it needs a version of the countable Axiom of Choice.

Note that Martin’s theorem implies (in ZFC) the upward absoluteness of Σ1
2
-

Determinacy, a fact we used in the proof sketch on page 848.

This is by Shoenfield’s theorem onΠ1
2
-absoluteness which shows that a winning strategy

for Player I in a Π1
2
-game, is a winning strategy for Player I in that Π1

2
-game in all outer

models.

Thus since Shoenfield’s theorem holds in Second Order Number Theory, if N is a model

of Second Order Number Theory and if ∆1
2
-Turing Determinacy holds in N, then ∆1

2
-Turing

Determinacy holds in N[c] where c is an N-generic Cohen real. But then by the main

theorem of [9], Σ1
2
-Determinacy holds in N[c].

References

[1] Sean Cody. A short core model induction proof of AD-L(R) from TD + DCR. preprint,

2021.

[2] J. Henle, A. R. D. Mathias, and W. Hugh Woodin. A barren extension. In Methods in

Mathematical Logic, Proceedings of the 6th Latin American Symposium on Mathe-

matical Logic held in Caracas, Venezuela, August 1-6, 1983, volume 1130 of Lecture

Notes in Mathematics, pages 195–207. Springer–Verlag, 1985.

[3] Ronald Jensen and John Steel. K without the measurable. J. Symbolic Logic,

78(3):708–734, 2013.

[4] A. Kechris and W. Hugh Woodin. Equivalence of partition properties and determi-

nacy. Proc. Nat. Acad. Sci. U.S.A, 80:1783–1786, 1983.

[5] Yiannis N. Moschovakis. Descriptive set theory. North-Holland Publishing Co., Am-

sterdam, 1980.

[6] Jan Mycielski and H. Steinhaus. A mathematical axiom contradicting the axiom of

choice. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 10:1–3, 1962.

[7] Itay Neeman. Optimal proofs of determinacy. Bull. Symbolic Logic, 1(3):327–339,

1995.



TURING DETERMINACY AND SUSLIN SETS 863

[8] W. Hugh Woodin. The axiom of determinacy, forcing axioms, and the nonstationary

ideal (2nd edition), volume 1 of de Gruyter Series in Logic and its Applications.

Walter de Gruyter & Co., Berlin, 2010.

[9] W. Hugh Woodin. Definable Determinacy and Higher Order Number Theory.

preprint, 2022.

[10] Liuzhen Wu. Set forcing and strong condensation for H(ω2). J. Symb. Log., 80(1):56–

84, 2015.

Department of Mathematics

Harvard University

wwoodin@g.harvard.edu


