NUMERICAL RADIUS POINTS OF $\mathcal{L}\left({ }^{m} l_{\infty}^{n}: l_{\infty}^{n}\right)$

Sung Guen Kim
(Received 19 October, 2021)

Abstract. For $n \geq 2$ and a real Banach space $E, \mathcal{L}\left({ }^{n} E: E\right)$ denotes the space of all continuous n-linear mappings from E to itself. Let

$$
\Pi(E)=\left\{\left[x^{*},\left(x_{1}, \ldots, x_{n}\right)\right]: x^{*}\left(x_{j}\right)=\left\|x^{*}\right\|=\left\|x_{j}\right\|=1 \text { for } j=1, \ldots, n\right\}
$$

For $T \in \mathcal{L}\left({ }^{n} E: E\right)$, we define

$$
\operatorname{Nrad}(T)=\left\{\left[x^{*},\left(x_{1}, \ldots, x_{n}\right)\right] \in \Pi(E):\left|x^{*}\left(T\left(x_{1}, \ldots, x_{n}\right)\right)\right|=v(T)\right\}
$$

where $v(T)$ denotes the numerical radius of $T . T$ is called numerical radius peak mapping if there is $\left[x^{*},\left(x_{1}, \ldots, x_{n}\right)\right] \in \Pi(E)$ that satisfies $\operatorname{Nrad}(T)=$ $\left\{ \pm\left[x^{*},\left(x_{1}, \ldots, x_{n}\right)\right]\right\}$.
In this paper we classify $\operatorname{Nrad}(T)$ for every $T \in \mathcal{L}\left({ }^{2} l_{\infty}^{2}: l_{\infty}^{2}\right)$ in connection with the set of the norm attaining points of T. We also characterize all numerical radius peak mappings in $\mathcal{L}\left({ }^{m} l_{\infty}^{n}: l_{\infty}^{n}\right)$ for $n, m \geq 2$, where $l_{\infty}^{n}=\mathbb{R}^{n}$ with the supremum norm.

1. Introduction

In 1961 Bishop and Phelps [2] initiated and showed that the set of norm attaining functionals on a Banach space is dense in the dual space. Shortly after, attention was paid to possible extensions of this result to more general settings, especially bounded linear operators between Banach spaces. The problem of denseness of norm attaining functions has moved to other types of mappings like multilinear forms or polynomials. The first result about norm attaining multilinear forms appeared in a joint work of Aron, Finet and Werner [1], where they showed that the Radon-Nikodym property is sufficient for the denseness of norm attaining multilinear forms. Choi and Kim [3] showed that the Radon-Nikodym property is also sufficient for the denseness of norm attaining polynomials and investigated the denseness of numerical radius attaining multilinear mappings and polynomials on a Banach space. Jiménez-Sevilla and Payá [4] studied the denseness of norm attaining multilinear forms and polynomials on preduals of Lorentz sequence spaces.

Let $n \in \mathbb{N}$ and $n \geq 2$. We write S_{E} for the unit sphere of a Banach space E. We denote by $\mathcal{L}\left({ }^{n} E: E\right)$ the Banach space of all continuous n-linear mappings from E into itself endowed with the norm $\|T\|=\sup _{\left(x_{1}, \cdots, x_{n}\right) \in S_{E} \times \cdots \times S_{E}}\left\|T\left(x_{1}, \cdots, x_{n}\right)\right\|$. $\mathcal{L}_{s}\left({ }^{n} E: E\right)$ denotes the closed subspace of all continuous symmetric n-linear mappings on E. We let

$$
\Pi(E)=\left\{\left[x^{*},\left(x_{1}, \ldots, x_{n}\right)\right]: x^{*}\left(x_{j}\right)=\left\|x^{*}\right\|=\left\|x_{j}\right\|=1 \text { for } j=1, \ldots, n\right\}
$$

[^0]An element $\left[x^{*},\left(x_{1}, \ldots, x_{n}\right)\right] \in \Pi(E)$ is called a numerical radius point of $T \in$ $\mathcal{L}\left({ }^{n} E: E\right)$ if $\left|x^{*}\left(T\left(x_{1}, \ldots, x_{n}\right)\right)\right|=v(T)$, where the numerical radius of T is defined by

$$
v(T)=\sup _{\left[y^{*},\left(y_{1}, \ldots, y_{n}\right)\right] \in \Pi(E)}\left|y^{*}\left(T\left(y_{1}, \ldots, y_{n}\right)\right)\right|
$$

For $T \in \mathcal{L}\left({ }^{n} E: E\right)$, we define

$$
\operatorname{Nrad}(T)=\left\{\left[x^{*},\left(x_{1}, \ldots, x_{n}\right)\right] \in \Pi(E):\left|x^{*}\left(T\left(x_{1}, \ldots, x_{n}\right)\right)\right|=v(T)\right\}
$$

$\operatorname{Nrad}(T)$ is called the set of numerical radius points of T. Notice that $\left[x^{*},\left(x_{1}, \ldots, x_{n}\right)\right] \in$ $\operatorname{Nrad}(T)$ if and only if $\left[-x^{*},\left(-x_{1}, \ldots,-x_{n}\right)\right] \in \operatorname{Nrad}(T)$.
T is called numerical radius peak mapping if there is $\left[x^{*},\left(x_{1}, \ldots, x_{n}\right)\right] \in \Pi(E)$ such that $\operatorname{Nrad}(T)=\left\{ \pm\left[x^{*},\left(x_{1}, \ldots, x_{n}\right)\right]\right\}$.

An element $\left(x_{1}, \ldots, x_{n}\right) \in E^{n}$ is called a norming point of $L \in \mathcal{L}\left({ }^{n} E\right)$ if $\left\|x_{1}\right\|=$ $\ldots=\left\|x_{n}\right\|=1$ and $\left|L\left(x_{1}, \ldots, x_{n}\right)\right|=\|L\|$. We then define

$$
\operatorname{Norm}(L)=\left\{\left(x_{1}, \ldots, x_{n}\right) \in S_{E} \times \ldots \times S_{E}:\left|L\left(x_{1}, \ldots, x_{n}\right)\right|=\|L\|\right\}
$$

$\operatorname{Norm}(L)$ is called the norming set of L.
A mapping $P: E \rightarrow \mathbb{R}$ is a continuous n-homogeneous polynomial if there exists a continuous n-linear form L on the product $E \times \cdots \times E$ such that $P(x)=$ $L(x, \ldots, x)$ for every $x \in E$. We denote by $\mathcal{P}\left({ }^{n} E\right)$ the Banach space of all continuous n-homogeneous polynomials from E into \mathbb{R} endowed with the norm $\|P\|=$ $\sup _{\|x\|=1}|P(x)|$. An element $\left[x^{*}, x\right] \in \pi(E)$ is called a numerical radius point of $P \in \mathcal{P}\left({ }^{n} E: E\right)$ if $\left|x^{*}(P(x))\right|=v(P)$, where the numerical radius of P is defined by

$$
v(P)=\sup _{\left[y^{*}, y\right] \in \Pi(E)}\left|y^{*}(P(y))\right| .
$$

We define

$$
\operatorname{Nrad}(P)=\left\{\left[x^{*}, x\right] \in \Pi(E):\left|x^{*}(P(x))\right|=v(P)\right\}
$$

$\operatorname{Nrad}(P)$ is called the set of numerical radius points of P. Notice that $\left[x^{*}, x\right] \in$ $\operatorname{Nrad}(P)$ if and only if $\left[-x^{*},-x\right] \in \operatorname{Nrad}(P)$.

An element $x \in E$ is called a norming point of $P \in \mathcal{P}\left({ }^{n} E\right)$ if $\|x\|=1$ and $|P(x)|=\|P\|$. For $P \in \mathcal{P}\left({ }^{n} E\right)$, we define

$$
\operatorname{Norm}(P)=\left\{x \in S_{E}:|P(x)|=\|P\|\right\}
$$

$\operatorname{Norm}(P)$ is called the norming set of P.
Kim in [6] classified $\operatorname{Norm}(P)$ for every $P \in \mathcal{P}\left({ }^{2} l_{\infty}^{2}\right)$, where $l_{\infty}^{n}=\mathbb{R}^{n}$ with the supremum norm. Kim in [5] also classified $\operatorname{Norm}(T)$ for every $T \in \mathcal{L}\left({ }^{2} l_{\infty}^{2}\right)$.

If $T \in \mathcal{L}\left({ }^{n} E\right)$ or $\mathcal{L}\left({ }^{n} E: E\right)$ and $\operatorname{Norm}(T) \neq \emptyset, T$ is called a norm attaining and if $T \in \mathcal{L}\left({ }^{n} E: E\right)$ and $\operatorname{Nrad}(T) \neq \emptyset, T$ is called a numerical radius attaining. Similarly, if $P \in \mathcal{P}\left({ }^{n} E\right)$ or $\mathcal{P}\left({ }^{n} E: E\right)$ and $\operatorname{Norm}(P) \neq \emptyset, P$ is called a norm attaining and if $P \in \mathcal{P}\left({ }^{n} E\right)$ or $\mathcal{P}\left({ }^{n} E: E\right)$ and $\operatorname{Nrad}(P) \neq \emptyset, P$ is called a numerical radius attaining. (See [3])

For more details about the theory of multilinear mappings and polynomials on a Banach space, we refer to [7].

In this paper we classify $\operatorname{Nrad}(T)$ for every $T \in \mathcal{L}\left({ }^{2} l_{\infty}^{2}: l_{\infty}^{2}\right)$ in connection with $\operatorname{Norm}(T)$. We also characterize all numerical radius peak multilinear mappings in $\mathcal{L}\left({ }^{m} l_{\infty}^{n}: l_{\infty}^{n}\right)$ for $n, m \geq 2$.

2. Results

Throughout the paper we let E be a Banach space and $n, m \in \mathbb{N}, n, m \geq 2$. We denote $l_{\infty}^{m}=\mathbb{R}^{m}$ with the supremum norm.

For $k=1, \ldots, m$, we let

$$
\begin{aligned}
& \mathcal{W}_{n, m}(k)=\left\{\left(\left(w_{1}^{(1)}, \ldots, w_{k-1}^{(1)}, 1, w_{k+1}^{(1)}, \ldots, w_{k+1}^{(1)}, \ldots, w_{m}^{(1)}\right), \ldots\right.\right. \\
&\left.\left(w_{1}^{(n)}, \ldots, w_{k-1}^{(n)}, 1, w_{k+1}^{(n)}, \ldots, w_{m}^{(n)}\right)\right) \\
&\left.: w_{j}^{(i)}= \pm 1 \text { for } 1 \leq i \leq n, 1 \leq j \neq k \leq m\right\}
\end{aligned}
$$

Note that for $1 \leq k \leq m, \mathcal{W}_{n, m}(k)$ has $2^{(m-1) n}$-elements in $S_{l_{\infty}^{m}} \times \cdots \times S_{l_{\infty}^{m}}$. Let S be a non-empty subset of a real Banach space E. Let

$$
\operatorname{conv}(S)=\left\{\sum_{j=1}^{k} t_{j} a_{j}: 0 \leq t_{j} \leq 1, \sum_{j=1}^{k} t_{j}=1, a_{j} \in S \text { for } k \in \mathbb{N} \text { and } 1 \leq j \leq k\right\}
$$

We call $\operatorname{conv}(S)$ the convex hull of S. Recall that the Krein-Milman Theorem says that every non-empty compact convex subset of a Hausdorff locally convex space is the closed convex hull of its set of extreme points. Hence, the unit ball of l_{∞}^{m} is the closed convex hull of the set of its extreme points.

Theorem 2.1. Let $n, m \geq 2$ and $T \in \mathcal{L}\left({ }^{n} l_{\infty}^{m}\right)$. Then, $\|T\|=\sup _{W \in \mathcal{W}_{n, m}(k)}|T(W)|$ for $1 \leq k \leq m$.

Proof. Write

$$
\operatorname{ext} B_{l_{\infty}^{m}}=\left\{a_{1}, \ldots, a_{2^{m}}\right\}
$$

where $\left|e_{j}^{*}\left(a_{l}\right)\right|=1$ for all $1 \leq j \leq m$ and $1 \leq l \leq 2^{m}$. By the Krein-Milman Theorem we have

$$
B_{l_{\infty}^{m}}=\overline{\operatorname{conv}}\left(\left\{a_{1}, \ldots, a_{2^{m}}\right\}\right)
$$

Let $\left(x_{1}^{(j)}, \ldots, x_{m}^{(j)}\right) \in B_{l_{\infty}^{m}}(1 \leq j \leq n)$. There exists $t_{1}^{(j)}, \ldots, t_{2^{m}}^{(j)} \in \mathbb{R}$ such that

$$
\left|t_{1}^{(j)}\right|+\ldots+\left|t_{2^{m}}^{(j)}\right| \leq 1 \text { and }\left(x_{1}^{(j)}, \ldots, x_{m}^{(j)}\right)=t_{1}^{(j)} a_{1}+\cdots+t_{2^{m}}^{(j)} a_{2^{m}}(1 \leq j \leq n)
$$

It follows that

$$
\begin{aligned}
& \left|T\left(\left(x_{1}^{(1)}, \ldots, x_{m}^{(1)}\right), \ldots,\left(x_{1}^{(n)}, \ldots, x_{m}^{(n)}\right)\right)\right| \\
= & \left|T\left(t_{1}^{(1)} a_{1}+\cdots+t_{2^{m}}^{(1)} a_{2^{m}}, \ldots, t_{1}^{(n)} a_{1}+\cdots+t_{2^{m}}^{(n)} a_{2^{m}}\right)\right| \\
\leq & \sum_{1 \leq j_{k} \leq 2^{m}, 1 \leq k \leq n}\left|t_{j_{1}}^{(1)}\right| \cdots\left|t_{j_{n}}^{(n)}\right|\left|T\left(a_{j_{1}}, \ldots, a_{j_{n}}\right)\right| \\
= & \sum_{1 \leq j_{k} \leq 2^{m}, 1 \leq k \leq n}\left|t_{j_{1}}^{(1)}\right| \cdots\left|t_{j_{n}}^{(n)}\right|\left|T\left(\operatorname{sign}\left(e_{k}^{*}\left(a_{j_{1}}\right)\right) a_{j_{1}}, \ldots, \operatorname{sign}\left(e_{k}^{*}\left(a_{j_{n}}\right)\right) a_{j_{n}}\right)\right| \\
\leq & \left(\sum_{1 \leq j_{1} \leq 2^{m}}\left|t_{j_{1}}^{\left(1_{1}\right)}\right|\right) \cdots\left(\sum_{1 \leq j_{n} \leq 2^{m}}\left|t_{j_{n}}^{(n)}\right|\right)_{W \in \mathcal{W}_{n, m}(k)}|T(W)| \\
\leq & \sup _{W \in \mathcal{W}_{n, m}(k)}|T(W)|,
\end{aligned}
$$

which completes the proof.

We can now present explicit formulae for the numerical radius $v(T)$ for every $T \in \mathcal{L}\left({ }^{n} l_{\infty}^{m}: l_{\infty}^{m}\right)$.

Theorem 2.2. Let $T \in \mathcal{L}\left({ }^{n} l_{\infty}^{m}: l_{\infty}^{m}\right)$ with $T=\left(T_{1}, \ldots, T_{m}\right)$ for some $T_{k} \in \mathcal{L}\left({ }^{n} l_{\infty}^{m}\right)$ $(k=1, \ldots, m)$. Then
(1) $v(T)=\|T\|=\max \left\{\left\|T_{k}\right\|: 1 \leq k \leq m\right\}$.
(2) $v(T)=\max \left\{I_{k}, J_{k}: 1 \leq k \leq m\right\}=\max \left\{I_{k}: 1 \leq k \leq m\right\}$, where

$$
\begin{aligned}
I_{k}=\sup & \left\{\mid e_{k}^{*}\left(T \left(\left(x_{1}^{(1)}, \ldots, x_{k-1}^{(1)}, 1, x_{k}^{(1)}, \ldots, x_{m}^{(1)}\right), \ldots,\right.\right.\right. \\
J_{k}=\sup & \left.\left.\left\{x_{1}^{(n)}, \ldots, x_{k-1}^{(n)}, 1, x_{k}^{(n)}, \ldots, x_{m}^{(n)}\right)\right)\right)\left|:\left|x_{l}^{(j)}\right| \leq 1,1 \leq j \leq n, 1 \leq l \neq k \leq m\right\} \\
& \mid \epsilon_{l} z_{l} T_{l}\left(\left(\epsilon_{1} \operatorname{sign}\left(z_{1}\right), \ldots, \epsilon_{k-1} \operatorname{sign}\left(z_{k-1}\right), 1, \epsilon_{k+1} \operatorname{sign}\left(z_{k+1}\right),\right.\right. \\
& \left.\ldots, \epsilon_{m} \operatorname{sign}\left(z_{m}\right)\right), \ldots,\left(\epsilon_{1} \operatorname{sign}\left(z_{1}\right), \ldots, \epsilon_{k-1} \operatorname{sign}\left(z_{k-1}\right), 1, \epsilon_{k+1} \operatorname{sign}\left(z_{k+1}\right),\right. \\
& \left.\left.\ldots, \epsilon_{m} \operatorname{sign}\left(z_{m}\right)\right)\right)+z_{k} T_{k}\left(\left(\epsilon_{1} \operatorname{sign}\left(z_{1}\right), \ldots, \epsilon_{k-1} \operatorname{sign}\left(z_{k-1}\right), 1, \epsilon_{k+1} \operatorname{sign}\left(z_{k+1}\right),\right.\right. \\
& \left.\ldots, \epsilon_{m} \operatorname{sign}\left(z_{m}\right)\right), \ldots,\left(\epsilon_{1} \operatorname{sign}\left(z_{1}\right), \ldots, \epsilon_{k-1} \operatorname{sign}\left(z_{k-1}\right), 1, \epsilon_{k+1} \operatorname{sign}\left(z_{k+1}\right),\right. \\
& \left.\left.\ldots, \epsilon_{m} \operatorname{sign}\left(z_{m}\right)\right)\right)\left|:\left|z_{1}\right|+\cdots+\left|z_{m}\right|=1, z_{k} \geq 0, \epsilon_{l}= \pm 1,1 \leq l \neq k \leq m\right\} .
\end{aligned}
$$

Proof. Notice that $v(T)=\max \left\{I_{k}, J_{k}: 1 \leq k \leq m\right\}$. By Theorem 2.1,

$$
\begin{aligned}
\left\|T_{k}\right\| & =\sup _{W_{j} \in \mathcal{W}_{n, m}(k), 1 \leq j \leq n}\left|T_{k}\left(W_{1}, \ldots, W_{n}\right)\right| \\
& \leq \sup _{\left[e_{k}^{*},\left(X_{1}, \ldots, X_{n}\right)\right] \in \Pi\left(l_{\infty}^{m}\right)}\left|T_{k}\left(X_{1}, \ldots, X_{n}\right)\right|=I_{k} \leq\left\|T_{k}\right\|
\end{aligned}
$$

for every $1 \leq k \leq m$. Hence, $I_{k}=\left\|T_{k}\right\|$ for $k=1, \ldots, m$. It follows that

$$
v(T) \geq \quad \max \left\{I_{k}: 1 \leq k \leq m\right\}=\max \left\{\left\|T_{k}\right\|: 1 \leq k \leq m\right\} \geq\|T\| \geq v(P)
$$

which concludes the proof.
Kim in [5] classified $\operatorname{Norm}(L)$ for every $L \in \mathcal{L}\left({ }^{2} l_{\infty}^{2}\right)$. We classify $\operatorname{Nrad}(T)$ for every $T \in \mathcal{L}\left({ }^{2} l_{\infty}^{2}: l_{\infty}^{2}\right)$ in connection with $\operatorname{Norm}(T)$.

Theorem 2.3. Let $T \in \mathcal{L}\left({ }^{2} l_{\infty}^{2}: l_{\infty}^{2}\right)$ with $T=\left(T_{1}, T_{2}\right)$ for some $T_{k} \in \mathcal{L}\left({ }^{2} l_{\infty}^{2}\right)$ $(k=1,2)$. The the following assertions hold:
Case 1. If $\left\|T_{1}\right\|>\left\|T_{2}\right\|$, then

$$
\operatorname{Nrad}(T)=\quad\left\{ \pm\left[e_{1}^{*},(X, Y)\right] \in \Pi\left(l_{\infty}^{2}\right):(X, Y) \in \operatorname{Norm}\left(T_{1}\right)\right\}
$$

Case 2. $\left\|T_{1}\right\|=\left\|T_{2}\right\|$.
Subcase 1. If $((1,1),(1,1)),((1,-1),(1,-1)) \notin \operatorname{Norm}\left(T_{1}\right) \cap \operatorname{Norm}\left(T_{2}\right)$, then

$$
\begin{aligned}
\operatorname{Nrad}(T)=\{ & \left. \pm\left[e_{1}^{*},(X, Y)\right] \in \Pi\left(l_{\infty}^{2}\right):(X, Y) \in \operatorname{Norm}\left(T_{1}\right)\right\} \\
& \cup\left\{ \pm\left[e_{2}^{*},(X, Y)\right] \in \Pi\left(l_{\infty}^{2}\right):(X, Y) \in \operatorname{Norm}\left(T_{2}\right)\right\}
\end{aligned}
$$

Subcase 2. $((1,1),(1,1)) \notin \operatorname{Norm}\left(T_{1}\right) \cap \operatorname{Norm}\left(T_{2}\right)$ and $((1,-1),(1,-1)) \in \operatorname{Norm}\left(T_{1}\right) \cap$ $\operatorname{Norm}\left(T_{2}\right)$. Let

$$
\begin{aligned}
\mathcal{F}=\{ & \left. \pm\left[e_{1}^{*},(X, Y)\right] \in \Pi\left(l_{\infty}^{2}\right):(X, Y) \in \operatorname{Norm}\left(T_{1}\right)\right\} \\
& \cup\left\{ \pm\left[e_{2}^{*},(X, Y)\right] \in \Pi\left(l_{\infty}^{2}\right):(X, Y) \in \operatorname{Norm}\left(T_{2}\right)\right\}
\end{aligned}
$$

If $T_{1}((1,-1),(1,-1)) \cdot T_{2}((1,-1),(1,-1)) \geq 0$, then $\operatorname{Nrad}(T)=\mathcal{F}$. If $T_{1}((1,-1),(1,-1)) \cdot T_{2}((1,-1),(1,-1))<0$, then

$$
\operatorname{Nrad}(T)=\mathcal{F} \cup\left\{ \pm\left[z e_{1}^{*}+(z-1) e_{2}^{*},((1,-1),(1,-1))\right]: 0<z<1\right\}
$$

Subcase 3. $((1,-1),(1,-1)) \notin \operatorname{Norm}\left(T_{1}\right) \cap \operatorname{Norm}\left(T_{2}\right)$ and $((1,1),(1,1)) \in \operatorname{Norm}\left(T_{1}\right) \cap$ $\operatorname{Norm}\left(T_{2}\right)$.

If $T_{1}((1,1),(1,1)) \cdot T_{2}((1,1),(1,1))<0$, then $\operatorname{Nrad}(T)=\mathcal{F}$.
If $T_{1}((1,1),(1,1)) \cdot T_{2}((1,1),(1,1)) \geq 0$, then

$$
\operatorname{Nrad}(T)=\mathcal{F} \cup\left\{ \pm\left[z e_{1}^{*}+(1-z) e_{2}^{*},((1,1),(1,1))\right]: 0<z<1\right\}
$$

Subcase 4. $((1,-1),(1,-1)),((1,1),(1,1)) \in \operatorname{Norm}\left(T_{1}\right) \cap \operatorname{Norm}\left(T_{2}\right)$.
If $T_{1}((1,-1),(1,-1)) \cdot T_{2}((1,-1),(1,-1)) \geq 0 \operatorname{and} T_{1}((1,1),(1,1)) \cdot T_{2}((1,1),(1,1))<$ 0 , then $\operatorname{Nrad}(T)=\mathcal{F}$.
If $T_{1}((1,-1),(1,-1)) \cdot T_{2}((1,-1),(1,-1)) \geq 0 \operatorname{and} T_{1}((1,1),(1,1)) \cdot T_{2}((1,1),(1,1)) \geq$ 0 , then

$$
\operatorname{Nrad}(T)=\mathcal{F} \cup\left\{ \pm\left[z e_{1}^{*}+(1-z) e_{2}^{*},((1,1),(1,1))\right]: 0<z<1\right\}
$$

If $T_{1}((1,-1),(1,-1)) \cdot T_{2}((1,-1),(1,-1))<0 \operatorname{and} T_{1}((1,1),(1,1)) \cdot T_{2}((1,1),(1,1))<$ 0 , then

$$
\operatorname{Nrad}(T)=\mathcal{F} \cup\left\{ \pm\left[z e_{1}^{*}+(z-1) e_{2}^{*},((1,-1),(1,-1))\right]: 0<z<1\right\}
$$

If $T_{1}((1,-1),(1,-1)) \cdot T_{2}((1,-1),(1,-1))<0 \operatorname{and} T_{1}((1,1),(1,1)) \cdot T_{2}((1,1),(1,1)) \geq$ 0 , then

$$
\begin{aligned}
\operatorname{Nrad}(T)=\mathcal{F} \cup\left\{ \pm\left[z e_{1}^{*}\right.\right. & \left.+(z-1) e_{2}^{*},((1,-1),(1,-1))\right] \\
& \left. \pm\left[z e_{1}^{*}+(1-z) e_{2}^{*},((1,1),(1,1))\right]: 0<z<1\right\}
\end{aligned}
$$

Case 3. If $\left\|T_{2}\right\|>\left\|T_{1}\right\|$, then

$$
\operatorname{Nrad}(T)=\left\{ \pm\left[e_{2}^{*},(X, Y)\right] \in \Pi\left(l_{\infty}^{2}\right):(X, Y) \in \operatorname{Norm}\left(T_{2}\right)\right\}
$$

Proof. Case 1. Suppose that $\left\|T_{1}\right\|>\left\|T_{2}\right\|$. We claim the following.
Claim. $\operatorname{Nrad}(T)=\left\{ \pm\left[e_{1}^{*},(X, Y)\right] \in \Pi\left(l_{\infty}^{2}\right):(X, Y) \in \operatorname{Norm}\left(T_{1}\right)\right\}$.
Notice that $\left[e_{1}^{*},(X, Y)\right] \in \operatorname{Nrad}(T)$ for every $(X, Y) \in \operatorname{Norm}\left(T_{1}\right)$. Indeed, by Theorem 2.2,

$$
\left|e_{1}^{*}(T(X, Y))\right|=\left|T_{1}(X, Y)\right|=\left\|T_{1}\right\|=\|T\|=v(T)
$$

Hence we have

$$
\left\{ \pm\left[e_{1}^{*},(X, Y)\right] \in \Pi\left(l_{\infty}^{2}\right):(X, Y) \in \operatorname{Norm}\left(T_{1}\right)\right\} \subseteq \operatorname{Nrad}(T)
$$

Let $\left[z^{*},(X, Y)\right] \in \operatorname{Nrad}(T)$. Write $z^{*}=z_{1} e_{1}^{*}+z_{2} e_{2}^{*}$ for some $\left(z_{1}, z_{2}\right) \in S_{l_{1}^{2}}$. We will show that $z^{*}= \pm e_{1}^{*}$ and $(X, Y) \in \operatorname{Norm}\left(T_{1}\right)$. We claim that $z_{2}=0$. Assume that $z_{2} \neq 0$. By Theorem 2.2, it follows that

$$
\begin{aligned}
\left\|T_{1}\right\| & =\|T\|=v(T)=\left|z^{*}(T(X, Y))\right| \leq\left|z_{1}\right|\left|T_{1}(X, Y)\right|+\left|z_{2}\right|\left|T_{2}(X, Y)\right| \\
& \leq\left|z_{1}\right|\left\|T_{1}\right\|+\left|z_{2}\right|\left\|T_{2}\right\|<\left|z_{1}\right|\left\|T_{1}\right\|+\left|z_{2}\right|\left\|T_{1}\right\|=\left\|T_{1}\right\|
\end{aligned}
$$

which is a contradiction. Hence, $z^{*}= \pm e_{1}^{*}$. Without loss of generality we may assume that $z^{*}=e_{1}^{*}$. Notice that $(X, Y) \in \operatorname{Norm}\left(T_{1}\right)$. Indeed, by Theorem 2.2,

$$
\left\|T_{1}\right\|=\|T\|=v(T)=\left|e_{1}^{*}(T(X, Y))\right|=\left|T_{1}(X, Y)\right| .
$$

Therefore $\left[z^{*},(X, Y)\right]=\left[e_{1}^{*},(X, Y)\right]$ for some $(X, Y) \in \operatorname{Norm}\left(T_{1}\right)$. As a result

$$
\operatorname{Nrad}(T) \subseteq\left\{ \pm\left[e_{1}^{*},(X, Y)\right] \in \Pi\left(l_{\infty}^{2}\right):(X, Y) \in \operatorname{Norm}\left(T_{1}\right)\right\}
$$

Case 2. Suppose that $\left\|T_{1}\right\|=\left\|T_{2}\right\|$.
Subcase 1. Assuming $((1,1),(1,1)),((1,-1),(1,-1)) \notin \operatorname{Norm}\left(T_{1}\right) \cap \operatorname{Norm}\left(T_{2}\right)$, we claim the following.

Claim. $\operatorname{Nrad}(T)=\mathcal{F}$.
By a similar argument in the proof of Case $1, \mathcal{F} \subseteq \operatorname{Nrad}(T)$. Let $\left[z^{*},(X, Y)\right] \in$ $\operatorname{Nrad}(T)$. Write $z^{*}=z_{1} e_{1}^{*}+z_{2} e_{2}^{*}$ for some $\left(z_{1}, z_{2}\right) \in S_{l_{1}^{2}}$. We will show that $z_{1} z_{2}=0$. Assume that $z_{1} z_{2} \neq 0$. By Theorem 2.2, it follows that

$$
\begin{aligned}
\left\|T_{1}\right\| & =v(T)=\left|z^{*}(T(X, Y))\right|=\left|z_{1}\right|\left|T_{1}(X, Y)\right|+\left|z_{2}\right|\left|T_{2}(X, Y)\right| \\
& \leq\left|z_{1}\right|\left\|T_{1}\right\|+\left|z_{2}\right|\left\|T_{2}\right\| \leq\left|z_{1}\right|\left\|T_{1}\right\|+\left|z_{2}\right|\left\|T_{1}\right\|=\left\|T_{1}\right\|,
\end{aligned}
$$

which shows that $\left\|T_{j}\right\|=\left|T_{j}(X, Y)\right|(j=1,2)$. Hence, $(X, Y) \in \operatorname{Norm}\left(T_{1}\right) \cap$ $\operatorname{Norm}\left(T_{2}\right)$. Write $X=\left(u_{1}, v_{1}\right)$ and $Y=\left(u_{2}, v_{2}\right)$ for some $\left(u_{2}, v_{2}\right) \in S_{l_{\infty}^{2}}$. Since $\left[z^{*},(X, Y)\right] \in \Pi\left(l_{\infty}^{2}\right)$, for $j=1,2$,

$$
1=z_{1} u_{j}+z_{2} v_{j} \leq\left|z_{1}\right|\left|u_{j}\right|+\left|z_{2}\right|\left|v_{j}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|=1
$$

which implies that $\left|u_{j}\right|=\left|v_{j}\right|=1$ for $j=1,2$. Without loss of generality, we may assume that $u_{1}=v_{1}=1$. Since $((1,1),(1,1)),((1,-1),(1,-1)) \notin \operatorname{Norm}\left(T_{1}\right) \cap$ $\operatorname{Norm}\left(T_{2}\right)$, we have either $(X=(1,1), Y=(1,-1))$ or $(X=(1,-1), Y=(1,1))$.

If $X=(1,1), Y=(1,-1)$, then

$$
1=z^{*}(X)=z^{*}(Y)=z_{1}-z_{2}=z_{1}+z_{2}
$$

so we have $z_{2}=0$. This is a contradiction. If $X=(1,-1), Y=(1,1)$, then

$$
1=z^{*}(X)=z^{*}(Y)=z_{1}+z_{2}=z_{1}-z_{2}
$$

and so $z_{2}=0$. This is also a contradiction. Therefore, $z_{1} z_{2}=0$. If $z_{1}=0$, then $z^{*}= \pm e_{2}^{*}$ and $(X, Y) \in \operatorname{Norm}\left(T_{2}\right)$. If $z^{*}=e_{2}^{*}$, then $\left[z^{*},(X, Y)\right]=\left[e_{2}^{*},(X, Y)\right] \in$ \mathcal{F}. If $z^{*}=-e_{2}^{*}$, then $\left[z^{*},(X, Y)\right]=-\left[e_{2}^{*},(-X,-Y)\right] \in \mathcal{F}$ because $(-X,-Y) \in$ $\operatorname{Norm}\left(T_{2}\right)$. Hence, $\operatorname{Nrad}(T) \subseteq \mathcal{F}$. We have shown the claim.

Subcase 2. Assume that $((1,1),(1,1)) \notin \operatorname{Norm}\left(T_{1}\right) \cap \operatorname{Norm}\left(T_{2}\right)$ and $((1,-1),(1,-1)) \in$ $\operatorname{Norm}\left(T_{1}\right) \cap \operatorname{Norm}\left(T_{2}\right)$. We claim the following.

Claim. If $T_{1}((1,-1),(1,-1)) \cdot T_{2}((1,-1),(1,-1)) \geq 0$, then $\operatorname{Nrad}(T)=\mathcal{F}$.
By a similar argument in the proof of Case 1,

$$
\mathcal{F} \cup\left\{ \pm\left[z e_{1}^{*}+(z-1) e_{2}^{*},((1,-1),(1,-1))\right]: 0<z<1\right\} \subseteq \operatorname{Nrad}(T)
$$

Let $\left[z^{*},(X, Y)\right] \in \operatorname{Nrad}(T)$. Write $z^{*}=z_{1} e_{1}^{*}+z_{2} e_{2}^{*}$ for some $\left(z_{1}, z_{2}\right) \in S_{l_{1}^{2}}$. Suppose that $z_{1} z_{2}=0$. If $z_{1}=0$, then $z^{*}= \pm e_{2}^{*}$ and $(X, Y) \in \operatorname{Norm}\left(T_{2}\right)$. If $z^{*}=e_{2}^{*}$, then $\left[z^{*},(X, Y)\right]=\left[e_{2}^{*},(X, Y)\right] \in \mathcal{F}$. If $z^{*}=-e_{2}^{*}$, then $\left[z^{*},(X, Y)\right]=-\left[e_{2}^{*},(-X,-Y)\right] \in$ \mathcal{F} because $(-X,-Y) \in \operatorname{Norm}\left(T_{2}\right)$. Suppose that $z_{1} z_{2} \neq 0$. Since $1=z^{*}(X)=$ $z^{*}(Y), z^{*}= \pm\left(z_{0} e_{1}+\left(z_{0}-1\right) e_{2}\right)$ for some $0<z_{0}<1$. By the same argument as in the proof of Subcase 1 and our hypothesis, we have either $(X=(1,1), Y=$ $(1,-1)),(X=(1,-1), Y=(1,1))$, or $(X=(1,-1), Y=(1,-1))$. Using the same argument as in the proof of Subcase 1 we know that $X=(1,-1)$ and $Y=(1,-1)$. We will show that $T_{1}((1,-1),(1,-1)) \cdot T_{2}((1,-1),(1,-1))<0$. Assume that

$$
T_{1}((1,-1),(1,-1)) \cdot T_{2}((1,-1),(1,-1)) \geq 0
$$

By Theorem 2.2, it follows that

$$
\begin{aligned}
\left\|T_{1}\right\| & =v(T)=\left|z^{*}(T((1,-1),(1,-1)))\right| \\
& =\left|z_{0} T_{1}((1,-1),(1,-1))+\left(z_{0}-1\right) T_{2}((1,-1),(1,-1))\right| \\
& <\left|z_{0}\right|\left\|T_{1}\right\|+\left|z_{0}-1\right|\left\|T_{2}\right\| \leq\left|z_{0}\right|\left\|T_{1}\right\|+\left|z_{0}-1\right|\left\|T_{1}\right\|=\left\|T_{1}\right\|
\end{aligned}
$$

which is impossible. Therefore we have $T_{1}((1,-1),(1,-1)) \cdot T_{2}((1,-1),(1,-1))<0$. Notice that

$$
\begin{aligned}
{\left[z^{*},(X, Y)\right] } & = \pm\left[z_{0} e_{1}^{*}+\left(z_{0}-1\right) e_{2}^{*},((1,-1),(1,-1))\right] \\
& \subseteq \mathcal{F} \cup\left\{ \pm\left[z e_{1}^{*}+(z-1) e_{2}^{*},((1,-1),(1,-1))\right]: 0<z<1\right\} .
\end{aligned}
$$

Therefore, we have shown that if $T_{1}((1,-1),(1,-1)) \cdot T_{2}((1,-1),(1,-1)) \geq 0$, then $\operatorname{Nrad}(T)=\mathcal{F}$ and that if $T_{1}((1,-1),(1,-1)) \cdot T_{2}((1,-1),(1,-1))<0$, then

$$
\operatorname{Nrad}(T)=\mathcal{F} \cup\left\{ \pm\left[z e_{1}^{*}+(z-1) e_{2}^{*},((1,-1),(1,-1))\right]: 0<z<1\right\}
$$

Subcase 3. Assume that $((1,-1),(1,-1)) \notin \operatorname{Norm}\left(T_{1}\right) \cap \operatorname{Norm}\left(T_{2}\right)$ and $((1,1),(1,1)) \in$ $\operatorname{Norm}\left(T_{1}\right) \cap \operatorname{Norm}\left(T_{2}\right)$.

By analogous arguments as in the proof of Subcase 2, we conclude that if $T_{1}((1,1),(1,1)) \cdot T_{2}((1,1),(1,1))<0$, then $\operatorname{Nrad}(T)=\mathcal{F}$ and that if $T_{1}((1,1),(1,1))$. $T_{2}((1,1),(1,1)) \geq 0$, then

$$
\operatorname{Nrad}(T)=\mathcal{F} \cup\left\{ \pm\left[z e_{1}^{*}+(1-z) e_{2}^{*},((1,1),(1,1))\right]: 0<z<1\right\}
$$

Subcase 4. Assume that $((1,-1),(1,-1)),((1,1),(1,1)) \in \operatorname{Norm}\left(T_{1}\right) \cap \operatorname{Norm}\left(T_{2}\right)$. The proof is analogously similar to earlier subcases which we will skip here.
Case 3. Suppose that $\left\|T_{2}\right\|>\left\|T_{1}\right\|$. We claim the following.
Claim. $\operatorname{Nrad}(T)=\left\{ \pm\left[e_{2}^{*},(X, Y)\right] \in \Pi\left(l_{\infty}^{2}\right):(X, Y) \in \operatorname{Norm}\left(T_{2}\right)\right\}$.
Notice that $\left[e_{2}^{*},(X, Y)\right] \in \operatorname{Nrad}(T)$ for every $(X, Y) \in \operatorname{Norm}\left(T_{2}\right)$. Indeed, by Theorem 2.2,

$$
\left|e_{1}^{*}(T(X, Y))\right|=\left|T_{1}(X, Y)\right|=\left\|T_{1}\right\|=\|T\|=v(T)
$$

Therefore we have

$$
\left\{ \pm\left[e_{2}^{*},(X, Y)\right] \in \Pi\left(l_{\infty}^{2}\right):(X, Y) \in \operatorname{Norm}\left(T_{2}\right)\right\} \subseteq \operatorname{Nrad}(T)
$$

Let $\left[z^{*},(X, Y)\right] \in \operatorname{Nrad}(T)$. Write $z^{*}=z_{1} e_{1}^{*}+z_{2} e_{2}^{*}$ for some $\left(z_{1}, z_{2}\right) \in S_{l_{1}^{2}}$. We will show that $z^{*}= \pm e_{2}^{*}$ and $(X, Y) \in \operatorname{Norm}\left(T_{2}\right)$. We claim that $z_{1}=0$. Assume that $z_{1} \neq 0$. By Theorem 2.2, it follows that

$$
\begin{aligned}
\left\|T_{2}\right\| & =\|T\|=v(T)=\left|z^{*}(T(X, Y))\right| \leq\left|z_{1}\right|\left|T_{1}(X, Y)\right|+\left|z_{2}\right|\left|T_{2}(X, Y)\right| \\
& \leq\left|z_{1}\right|\left\|T_{1}\right\|+\left|z_{2}\right|\left\|T_{2}\right\|<\left|z_{1}\right|\left\|T_{2}\right\|+\left|z_{2}\right|\left\|T_{2}\right\|=\left\|T_{2}\right\|
\end{aligned}
$$

which is a contradiction. Hence, $z^{*}= \pm e_{2}^{*}$. Without loss of generality we may assume that $z^{*}=e_{2}^{*}$. Notice that $(X, Y) \in \operatorname{Norm}\left(T_{2}\right)$. Indeed, by Theorem 2.2,

$$
\left\|T_{2}\right\|=\|T\|=v(T)=\left|e_{2}^{*}(T(X, Y))\right|=\left|T_{2}(X, Y)\right|
$$

Hence, $\left[z^{*},(X, Y)\right]=\left[e_{2}^{*},(X, Y)\right]$ for some $(X, Y) \in \operatorname{Norm}\left(T_{2}\right)$. Hence,

$$
\operatorname{Nrad}(T) \subseteq\left\{ \pm\left[e_{2}^{*},(X, Y)\right] \in \Pi\left(l_{\infty}^{2}\right):(X, Y) \in \operatorname{Norm}\left(T_{2}\right)\right\}
$$

which the claim follows and the proof is completed.
For $k=1, \ldots, m$, we define

$$
\begin{aligned}
& \mathcal{V}_{n, m}(k)=\left\{\left(\left(v_{1}^{(1)}, \ldots, v_{k-1}^{(1)}, 1, v_{k+1}^{(1)}, \ldots, v_{m}^{(1)}\right), \ldots\right.\right. \\
& \left.\qquad\left(v_{1}^{(n)}, \ldots, v_{k-1}^{(n)}, 1, v_{k+1}^{(n)}, \ldots, v_{m}^{(n)}\right)\right) \\
& \\
& \left.:-1 \leq v_{j}^{(i)} \leq 1 \text { for } 1 \leq i \leq n, 1 \leq j \neq k \leq m\right\}
\end{aligned}
$$

We characterize all numerical radius peak mappings in $\mathcal{L}\left({ }^{m} l_{\infty}^{n}: l_{\infty}^{n}\right)$ for $n, m \geq 2$.

Theorem 2.4. Let $T \in \mathcal{L}\left({ }^{n} l_{\infty}^{m}: l_{\infty}^{m}\right)$ with $T=\left(T_{1}, \ldots T_{m}\right)$ for some $T_{k} \in \mathcal{L}\left({ }^{n} l_{\infty}^{m}\right)$ $(k=1, \ldots, m)$. Then T is a numerical radius peak mapping if and only if there is $1 \leq k_{0} \leq m$ such that $\left\|T_{k_{0}}\right\|>\left\|T_{k}\right\|$ for every $1 \leq k \neq k_{0} \leq m$ and

$$
\left|\mathcal{V}_{n, m}\left(k_{0}\right) \cap \operatorname{Norm}\left(T_{k_{0}}\right)\right|=1
$$

Proof. (\Rightarrow). Claim 1. There is $1 \leq k_{0} \leq m$ such that $\left\|T_{k_{0}}\right\|>\left\|T_{k}\right\|$ for every $1 \leq k \neq k_{0} \leq m$.

Assume the contrary. Let $1 \leq k_{1} \neq k_{2} \leq m$ such that $\left\|T_{k_{i}}\right\|=\|T\|$ for $i=1,2$. By Theorem 2.1, there are $\left(X_{1}^{(i)}, \ldots, X_{n}^{(i)}\right) \in \operatorname{Norm}(T) \cap \mathcal{W}_{n, m}\left(k_{i}\right)$ for $i=1,2$. Hence, $\pm\left[e_{k_{i}}^{*},\left(X_{1}^{(i)}, \ldots, X_{n}^{(i)}\right)\right] \in \Pi\left(l_{\infty}^{m}\right)$ for $i=1,2$. By Theorem 2.2, it follows that for $i=1,2$,

$$
\left|e_{k_{i}}^{*}\left(T\left(X_{1}^{(i)}, \ldots, X_{n}^{(i)}\right)\right)\right|=\left|T_{k_{i}}\left(X_{1}^{(i)}, \ldots, X_{n}^{(i)}\right)\right|=\left\|T_{k_{i}}\right\|=\|T\|=v(T)
$$

Hence, $\pm\left[e_{k_{i}}^{*},\left(X_{1}^{(i)}, \ldots, X_{n}^{(i)}\right)\right] \in \operatorname{Nrad}(T)$ for $i=1,2$. Notice that

$$
\left[e_{k_{1}}^{*},\left(X_{1}^{(1)}, \ldots, X_{n}^{(1)}\right)\right] \neq \pm\left[e_{k_{2}}^{*},\left(X_{1}^{(2)}, \ldots, X_{n}^{(2)}\right)\right]
$$

This is a contradiction because T is a numerical radius peak mapping. We have shown Claim 1.

Let $\operatorname{Nrad}(T)=\left\{ \pm\left[z^{*},\left(X_{1}, \ldots, X_{n}\right)\right]\right\}$. Write $z^{*}=\sum_{1 \leq j \leq m} z_{j} e_{j}^{*} \in S_{l_{1}^{m}}$.
Claim 2. $z_{j}=0$ for every $j \neq k_{0}$.
Assume that $z_{k} \neq 0$ for some $k \neq k_{0}$. By Claim 1 and Theorem 2.2, it follows that

$$
\begin{aligned}
v(T) & =\left|z^{*}\left(T\left(X_{1}, \ldots, X_{n}\right)\right)\right|=\left|z_{k}\right|\left|T_{k}\left(X_{1}, \ldots, X_{n}\right)\right|+\sum_{1 \leq j \neq k \leq m}\left|z_{j}\right|\left|T_{j}\left(X_{1}, \ldots, X_{n}\right)\right| \\
& \leq\left|z_{k}\right|\left\|T_{k}\right\|+\sum_{1 \leq j \neq k \leq m}\left|z_{j}\right|\left\|T_{j}\right\|<\left|z_{k}\right|\|T\|+\sum_{1 \leq j \neq k \leq m}\left|z_{j}\right|\|T\|=\|T\|=v(T),
\end{aligned}
$$

which is a contradiction. Hence, Claim 2 holds and $z^{*}= \pm e_{k_{0}}^{*}$. Without loss of generality we may assume that $z^{*}=e_{k_{0}}^{*}$.

Claim 3. $\mathcal{V}_{n, m}\left(k_{0}\right) \bigcap \operatorname{Norm}\left(T_{k_{0}}\right)=\left\{\left(X_{1}, \ldots, X_{n}\right)\right\}$.
Notice that $\left(X_{1}, \ldots, X_{m}\right) \in \mathcal{V}_{n, m}\left(k_{0}\right) \bigcap \operatorname{Norm}\left(T_{k_{0}}\right)$. Indeed, by Theorem 2.2,

$$
\left|T_{k_{0}}\left(X_{1}, \ldots, X_{n}\right)\right|=\left|e_{k_{0}}^{*}\left(T\left(X_{1}, \ldots, X_{n}\right)\right)\right|=v(T)=\|T\|=\left\|T_{k_{0}}\right\|,
$$

which shows that $\left(X_{1}, \ldots, X_{n}\right) \in \operatorname{Norm}\left(T_{k_{0}}\right)$. Obviously, $\left(X_{1}, \ldots, X_{n}\right) \in \mathcal{V}_{n, m}\left(k_{0}\right)$ because $\left[e_{k_{0}}^{*},\left(X_{1}, \ldots, X_{n}\right)\right]=\left[z^{*},\left(X_{1}, \ldots, X_{n}\right)\right] \in \Pi\left(l_{\infty}^{m}\right)$. Suppose that $\left(X_{1}^{\prime}, \ldots, X_{n}^{\prime}\right) \in$ $\mathcal{V}_{n, m}\left(k_{0}\right) \bigcap \operatorname{Norm}\left(T_{k_{0}}\right)$. We will show that $\left(X_{1}^{\prime}, \ldots, X_{n}^{\prime}\right)=\left(X_{1}, \ldots, X_{n}\right)$. Assume that $\left(X_{1}^{\prime}, \ldots, X_{n}^{\prime}\right) \neq\left(X_{1}, \ldots, X_{n}\right)$. Notice that $\left[e_{k_{0}}^{*},\left(X_{1}^{\prime}, \ldots, X_{n}^{\prime}\right)\right] \in \Pi\left(l_{\infty}^{m}\right)$. by Theorem 2.2, it follows that

$$
\left|e_{k_{0}}^{*}\left(T\left(X_{1}^{\prime}, \ldots, X_{n}^{\prime}\right)\right)\right|=\left|T_{k_{0}}\left(X_{1}^{\prime}, \ldots, X_{n}^{\prime}\right)\right|=\left\|T_{k_{0}}\right\|=\|T\|=v(T)
$$

which shows that

$$
\left[e_{k_{0}}^{*},\left(X_{1}^{\prime}, \ldots, X_{n}^{\prime}\right)\right] \in \operatorname{Nrad}(T)=\left\{ \pm\left[e_{k_{0}}^{*},\left(X_{1}, \ldots, X_{n}\right)\right]\right\}
$$

Hence, $\left(X_{1}^{\prime}, \ldots, X_{n}^{\prime}\right)=\left(X_{1}, \ldots, X_{n}\right)$. Therefore,

$$
\mathcal{V}_{n, m}\left(k_{0}\right) \bigcap \operatorname{Norm}\left(T_{k_{0}}\right)=\left\{\left(X_{1}, \ldots, X_{n}\right)\right\} .
$$

(\Leftarrow). Suppose that $\mathcal{V}_{n, m}\left(k_{0}\right) \bigcap \operatorname{Norm}\left(T_{k_{0}}\right)=\left\{\left(Y_{1}, \ldots, Y_{n}\right)\right\}$.
Claim 4. $\operatorname{Nrad}(T)=\left\{ \pm\left[e_{k_{0}}^{*},\left(Y_{1}, \ldots, Y_{m}\right)\right]\right\}$.
By a similar argument as in the proof of Claim 3, $\left[e_{k_{0}}^{*},\left(Y_{1}, \ldots, Y_{n}\right)\right] \in \operatorname{Nrad}(T)$. Let $\left[z^{*},\left(X_{1}, \ldots, X_{n}\right)\right] \in \operatorname{Nrad}(T)$ with $z^{*}=\sum_{1 \leq j \leq m} z_{j} e_{j}^{*} \in S_{l_{1}^{m}}$. By a similar argument as in the proof of Claim $2, z^{*}= \pm e_{k_{0}}^{*}$. Without loss of generality we may assume that $z^{*}=e_{k_{0}}^{*}$. By a similar argument as in the proof of Claim 3,

$$
\left(X_{1}, \ldots, X_{n}\right) \in \mathcal{V}_{n, m}\left(k_{0}\right) \bigcap \operatorname{Norm}\left(T_{k_{0}}\right)=\left\{\left(Y_{1}, \ldots, Y_{n}\right)\right\} .
$$

Hence, $\left(X_{1}, \ldots, X_{n}\right)=\left(Y_{1}, \ldots, Y_{n}\right)$ and $\left[z^{*},\left(X_{1}, \ldots, X_{n}\right)\right]=\left[e_{k_{0}}^{*},\left(Y_{1}, \ldots, Y_{n}\right)\right]$. Hence, Claim 4 holds. Therefore, T is a numerical radius peak mapping.

References

[1] R. M. Aron, C. Finet and E. Werner, Some remarks on norm-attaining nlinear forms, Function Spaces, Edwardsville, Lect. Notes Pure Appl. Math. 172, 19-28, Dekker, New York, 1995.
[2] E. Bishop and R. R. Phelps, A proof that every Banach space is subreflexive, Bull. Am. Math. Soc. 67 (1961), 97-98.
[3] Y. S. Choi and S. G. Kim, Norm or numerical radius attaining multilinear mappings and polynomials, J. Lond. Math. Soc., II. Ser. 54 (1) (1996), 135147.
[4] M. Jiménez Sevilla and R. Payá, Norm attaining multilinear forms and polynomials on preduals of Lorentz sequence spaces, Stud. Math. 127 (2) (1998), 99-112.
[5] S. G. Kim, The norming set of a bilinear form on l_{∞}^{2}, Commentat. Math. 60 (1-2) (2020), 37-63.
[6] S. G. Kim, The norming set of a polynomial in $\mathcal{P}\left({ }^{2} l_{\infty}^{2}\right)$, Honam Math. J. 42 (3) (2020), 569-576.
[7] S. Dineen, Complex Analysis on Infinite Dimensional Spaces, Springer-Verlag, London, 1999.

Sung Guen Kim
Department of Mathematics,
Kyungpook National University,
Daegu 702-701,
Republic of Korea
sgk317@knu.ac.kr

[^0]: 2020 Mathematics Subject Classification 46A22.
 Key words and phrases: Norming points; numerical radius; numerical radius attaining mappings; numerical radius points; numerical radius peak multilinear mappings.

