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Abstract. For n ≥ 2 and a real Banach space E, L(nE : E) denotes the space
of all continuous n-linear mappings from E to itself. Let

Π(E) =
{

[x∗, (x1, . . . , xn)] : x∗(xj) = ‖x∗‖ = ‖xj‖ = 1 for j = 1, . . . , n
}
.

For T ∈ L(nE : E), we define

Nrad(T ) =
{

[x∗, (x1, . . . , xn)] ∈ Π(E) : |x∗(T (x1, . . . , xn))| = v(T )
}
,

where v(T ) denotes the numerical radius of T . T is called numerical radius

peak mapping if there is [x∗, (x1, . . . , xn)] ∈ Π(E) that satisfies Nrad(T ) ={
± [x∗, (x1, . . . , xn)]

}
.

In this paper we classify Nrad(T ) for every T ∈ L(2l2∞ : l2∞) in connection with

the set of the norm attaining points of T . We also characterize all numerical

radius peak mappings in L(mln∞ : ln∞) for n,m ≥ 2, where ln∞ = Rn with the
supremum norm.

1. Introduction

In 1961 Bishop and Phelps [2] initiated and showed that the set of norm attaining
functionals on a Banach space is dense in the dual space. Shortly after, attention
was paid to possible extensions of this result to more general settings, especially
bounded linear operators between Banach spaces. The problem of denseness of
norm attaining functions has moved to other types of mappings like multilinear
forms or polynomials. The first result about norm attaining multilinear forms ap-
peared in a joint work of Aron, Finet and Werner [1], where they showed that
the Radon-Nikodym property is sufficient for the denseness of norm attaining mul-
tilinear forms. Choi and Kim [3] showed that the Radon-Nikodym property is
also sufficient for the denseness of norm attaining polynomials and investigated the
denseness of numerical radius attaining multilinear mappings and polynomials on a
Banach space. Jiménez-Sevilla and Payá [4] studied the denseness of norm attaining
multilinear forms and polynomials on preduals of Lorentz sequence spaces.

Let n ∈ N and n ≥ 2. We write SE for the unit sphere of a Banach space E. We
denote by L(nE : E) the Banach space of all continuous n-linear mappings from E
into itself endowed with the norm ‖T‖ = sup(x1,··· ,xn)∈SE×···×SE

‖T (x1, · · · , xn)‖.
Ls(

nE : E) denotes the closed subspace of all continuous symmetric n-linear map-
pings on E. We let

Π(E) =
{

[x∗, (x1, . . . , xn)] : x∗(xj) = ‖x∗‖ = ‖xj‖ = 1 for j = 1, . . . , n
}
.
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An element [x∗, (x1, . . . , xn)] ∈ Π(E) is called a numerical radius point of T ∈
L(nE : E) if |x∗(T (x1, . . . , xn))| = v(T ), where the numerical radius of T is defined
by

v(T ) = sup
[y∗,(y1,...,yn)]∈Π(E)

∣∣∣y∗(T (y1, . . . , yn)
)∣∣∣.

For T ∈ L(nE : E), we define

Nrad(T ) =
{

[x∗, (x1, . . . , xn)] ∈ Π(E) : |x∗(T (x1, . . . , xn))| = v(T )
}
.

Nrad(T ) is called the set of numerical radius points of T . Notice that [x∗, (x1, . . . , xn)] ∈
Nrad(T ) if and only if [−x∗, (−x1, . . . ,−xn)] ∈ Nrad(T ).
T is called numerical radius peak mapping if there is [x∗, (x1, . . . , xn)] ∈ Π(E)

such that Nrad(T ) =
{
± [x∗, (x1, . . . , xn)]

}
.

An element (x1, . . . , xn) ∈ En is called a norming point of L ∈ L(nE) if ‖x1‖ =
. . . = ‖xn‖ = 1 and |L(x1, . . . , xn)| = ‖L‖. We then define

Norm(L) =
{

(x1, . . . , xn) ∈ SE × . . .× SE : |L(x1, . . . , xn)| = ‖L‖
}
.

Norm(L) is called the norming set of L.
A mapping P : E → R is a continuous n-homogeneous polynomial if there ex-

ists a continuous n-linear form L on the product E × · · · × E such that P (x) =
L(x, . . . , x) for every x ∈ E. We denote by P(nE) the Banach space of all contin-
uous n-homogeneous polynomials from E into R endowed with the norm ‖P‖ =
sup‖x‖=1 |P (x)|. An element [x∗, x] ∈ π(E) is called a numerical radius point of

P ∈ P(nE : E) if |x∗(P (x))| = v(P ), where the numerical radius of P is defined by

v(P ) = sup
[y∗,y]∈Π(E)

∣∣∣y∗(P (y))
∣∣∣.

We define

Nrad(P ) =
{

[x∗, x] ∈ Π(E) : |x∗(P (x))| = v(P )
}
.

Nrad(P ) is called the set of numerical radius points of P . Notice that [x∗, x] ∈
Nrad(P ) if and only if [−x∗,−x] ∈ Nrad(P ).

An element x ∈ E is called a norming point of P ∈ P(nE) if ‖x‖ = 1 and
|P (x)| = ‖P‖. For P ∈ P(nE), we define

Norm(P ) =
{
x ∈ SE : |P (x)| = ‖P‖

}
.

Norm(P ) is called the norming set of P .
Kim in [6] classified Norm(P ) for every P ∈ P(2l2∞), where ln∞ = Rn with the

supremum norm. Kim in [5] also classified Norm(T ) for every T ∈ L(2l2∞).
If T ∈ L(nE) or L(nE : E) and Norm(T ) 6= ∅, T is called a norm attaining

and if T ∈ L(nE : E) and Nrad(T ) 6= ∅, T is called a numerical radius attaining.
Similarly, if P ∈ P(nE) or P(nE : E) and Norm(P ) 6= ∅, P is called a norm
attaining and if P ∈ P(nE) or P(nE : E) and Nrad(P ) 6= ∅, P is called a numerical
radius attaining. (See [3])

For more details about the theory of multilinear mappings and polynomials on
a Banach space, we refer to [7].
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In this paper we classify Nrad(T ) for every T ∈ L(2l2∞ : l2∞) in connection with
Norm(T ). We also characterize all numerical radius peak multilinear mappings in
L(mln∞ : ln∞) for n,m ≥ 2.

2. Results

Throughout the paper we let E be a Banach space and n,m ∈ N, n,m ≥ 2. We
denote lm∞ = Rm with the supremum norm.

For k = 1, . . . ,m, we let

Wn,m(k) =
{(

(w
(1)
1 , . . . , w

(1)
k−1, 1, w

(1)
k+1, . . . , w

(1)
k+1, . . . , w

(1)
m ), . . . ,

(w
(n)
1 , . . . , w

(n)
k−1, 1, w

(n)
k+1, . . . , w

(n)
m )

)
: w

(i)
j = ±1 for 1 ≤ i ≤ n, 1 ≤ j 6= k ≤ m

}
.

Note that for 1 ≤ k ≤ m, Wn,m(k) has 2(m−1)n-elements in Slm∞
× · · · × Slm∞

. Let S
be a non-empty subset of a real Banach space E. Let

conv(S) =
{ k∑

j=1

tjaj : 0 ≤ tj ≤ 1,

k∑
j=1

tj = 1, aj ∈ S for k ∈ N and 1 ≤ j ≤ k
}
.

We call conv(S) the convex hull of S. Recall that the Krein-Milman Theorem says
that every non-empty compact convex subset of a Hausdorff locally convex space
is the closed convex hull of its set of extreme points. Hence, the unit ball of lm∞ is
the closed convex hull of the set of its extreme points.

Theorem 2.1. Let n,m ≥ 2 and T ∈ L(nlm∞). Then, ‖T‖ = supW∈Wn,m(k) |T (W )|
for 1 ≤ k ≤ m.

Proof. Write

extBlm∞
= {a1, . . . , a2m},

where |e∗j (al)| = 1 for all 1 ≤ j ≤ m and 1 ≤ l ≤ 2m. By the Krein-Milman
Theorem we have

Blm∞
= conv

(
{a1, . . . , a2m}

)
.

Let (x
(j)
1 , . . . , x

(j)
m ) ∈ Blm∞

(1 ≤ j ≤ n). There exists t
(j)
1 , . . . , t

(j)
2m ∈ R such that

|t(j)
1 |+ . . .+ |t(j)

2m | ≤ 1 and (x
(j)
1 , . . . , x(j)

m ) = t
(j)
1 a1 + · · ·+ t

(j)
2ma2m (1 ≤ j ≤ n).
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It follows that∣∣∣T((x
(1)
1 , . . . , x(1)

m ), . . . , (x
(n)
1 , . . . , x(n)

m )
)∣∣∣

=
∣∣∣T(t(1)

1 a1 + · · ·+ t
(1)
2ma2m , . . . , t

(n)
1 a1 + · · ·+ t

(n)
2ma2m

)∣∣∣
≤

∑
1≤jk≤2m,1≤k≤n

|t(1)
j1
| · · · |t(n)

jn
| |T (aj1 , . . . , ajn)|

=
∑

1≤jk≤2m,1≤k≤n

|t(1)
j1
| · · · |t(n)

jn
|
∣∣∣T(sign(e∗k(aj1))aj1 , . . . , sign(e∗k(ajn))ajn

)∣∣∣
≤
( ∑

1≤j1≤2m

|t(1)
j1
|
)
· · ·
( ∑

1≤jn≤2m

|t(n)
jn
|
)

sup
W∈Wn,m(k)

|T (W )|

≤ sup
W∈Wn,m(k)

|T (W )|,

which completes the proof. �

We can now present explicit formulae for the numerical radius v(T ) for every
T ∈ L(nlm∞ : lm∞).

Theorem 2.2. Let T ∈ L(nlm∞ : lm∞) with T = (T1, . . . , Tm) for some Tk ∈ L(nlm∞)
(k = 1, . . . ,m). Then

(1) v(T ) = ‖T‖ = max
{
‖Tk‖ : 1 ≤ k ≤ m

}
.

(2) v(T ) = max{Ik, Jk : 1 ≤ k ≤ m} = max{Ik : 1 ≤ k ≤ m}, where

Ik = sup
{∣∣∣e∗k(T((x

(1)
1 , . . . , x

(1)
k−1, 1, x

(1)
k , . . . , x(1)

m ), . . . ,

(x
(n)
1 , . . . , x

(n)
k−1, 1, x

(n)
k , . . . , x(n)

m )
))∣∣∣ : |x(j)

l | ≤ 1, 1 ≤ j ≤ n, 1 ≤ l 6= k ≤ m
}
,

Jk = sup
{ ∑

1≤l 6=k≤m

∣∣∣εlzlTl((ε1 sign(z1), . . . , εk−1 sign(zk−1), 1, εk+1 sign(zk+1),

. . . , εm sign(zm)), . . . , (ε1 sign(z1), . . . , εk−1 sign(zk−1), 1, εk+1 sign(zk+1),

. . . , εm sign(zm))
)

+ zkTk

(
(ε1 sign(z1), . . . , εk−1 sign(zk−1), 1, εk+1 sign(zk+1),

. . . , εm sign(zm)), . . . , (ε1 sign(z1), . . . , εk−1 sign(zk−1), 1, εk+1 sign(zk+1),

. . . , εm sign(zm))
)∣∣∣ : |z1|+ · · ·+ |zm| = 1, zk ≥ 0, εl = ±1, 1 ≤ l 6= k ≤ m

}
.

Proof. Notice that v(T ) = max{Ik, Jk : 1 ≤ k ≤ m}. By Theorem 2.1,

‖Tk‖ = sup
Wj∈Wn,m(k),1≤j≤n

|Tk(W1, . . . ,Wn)|

≤ sup
[e∗k,(X1,...,Xn)]∈Π(lm∞)

|Tk(X1, . . . , Xn)| = Ik ≤ ‖Tk‖

for every 1 ≤ k ≤ m. Hence, Ik = ‖Tk‖ for k = 1, . . . ,m. It follows that

v(T ) ≥ max{Ik : 1 ≤ k ≤ m} = max
{
‖Tk‖ : 1 ≤ k ≤ m

}
≥ ‖T‖ ≥ v(P ),

which concludes the proof. �
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Kim in [5] classified Norm(L) for every L ∈ L(2l2∞). We classify Nrad(T ) for
every T ∈ L(2l2∞ : l2∞) in connection with Norm(T ).

Theorem 2.3. Let T ∈ L(2l2∞ : l2∞) with T = (T1, T2) for some Tk ∈ L(2l2∞)
(k = 1, 2). The the following assertions hold:

Case 1. If ‖T1‖ > ‖T2‖, then

Nrad(T ) =
{
± [e∗1, (X,Y )] ∈ Π(l2∞) : (X,Y ) ∈ Norm(T1)

}
.

Case 2. ‖T1‖ = ‖T2‖.

Subcase 1. If ((1, 1), (1, 1)), ((1,−1), (1,−1)) /∈ Norm(T1) ∩Norm(T2), then

Nrad(T ) =
{
± [e∗1, (X,Y )] ∈ Π(l2∞) : (X,Y ) ∈ Norm(T1)

}
∪
{
± [e∗2, (X,Y )] ∈ Π(l2∞) : (X,Y ) ∈ Norm(T2)

}
.

Subcase 2. ((1, 1), (1, 1)) /∈ Norm(T1)∩Norm(T2) and ((1,−1), (1,−1)) ∈ Norm(T1)∩
Norm(T2). Let

F =
{
± [e∗1, (X,Y )] ∈ Π(l2∞) : (X,Y ) ∈ Norm(T1)

}
∪
{
± [e∗2, (X,Y )] ∈ Π(l2∞) : (X,Y ) ∈ Norm(T2)

}
.

If T1((1,−1), (1,−1)) · T2((1,−1), (1,−1)) ≥ 0, then Nrad(T ) = F .
If T1((1,−1), (1,−1)) · T2((1,−1), (1,−1)) < 0, then

Nrad(T ) = F ∪
{
± [ze∗1 + (z − 1)e∗2, ((1,−1), (1,−1))] : 0 < z < 1

}
.

Subcase 3. ((1,−1), (1,−1)) /∈ Norm(T1)∩Norm(T2) and ((1, 1), (1, 1)) ∈ Norm(T1)∩
Norm(T2).

If T1((1, 1), (1, 1)) · T2((1, 1), (1, 1)) < 0, then Nrad(T ) = F .
If T1((1, 1), (1, 1)) · T2((1, 1), (1, 1)) ≥ 0, then

Nrad(T ) = F ∪
{
± [ze∗1 + (1− z)e∗2, ((1, 1), (1, 1))] : 0 < z < 1

}
.

Subcase 4. ((1,−1), (1,−1)), ((1, 1), (1, 1)) ∈ Norm(T1) ∩Norm(T2).

If T1((1,−1), (1,−1))·T2((1,−1), (1,−1)) ≥ 0 and T1((1, 1), (1, 1))·T2((1, 1), (1, 1)) <
0, then Nrad(T ) = F .

If T1((1,−1), (1,−1))·T2((1,−1), (1,−1)) ≥ 0 and T1((1, 1), (1, 1))·T2((1, 1), (1, 1)) ≥
0, then

Nrad(T ) = F ∪
{
± [ze∗1 + (1− z)e∗2, ((1, 1), (1, 1))] : 0 < z < 1

}
.

If T1((1,−1), (1,−1))·T2((1,−1), (1,−1)) < 0 and T1((1, 1), (1, 1))·T2((1, 1), (1, 1)) <
0, then

Nrad(T ) = F ∪
{
± [ze∗1 + (z − 1)e∗2, ((1,−1), (1,−1))] : 0 < z < 1

}
.
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If T1((1,−1), (1,−1))·T2((1,−1), (1,−1)) < 0 and T1((1, 1), (1, 1))·T2((1, 1), (1, 1)) ≥
0, then

Nrad(T ) = F ∪
{
± [ze∗1 + (z − 1)e∗2, ((1,−1), (1,−1))],

± [ze∗1 + (1− z)e∗2, ((1, 1), (1, 1))] : 0 < z < 1
}
.

Case 3. If ‖T2‖ > ‖T1‖, then

Nrad(T ) =
{
± [e∗2, (X,Y )] ∈ Π(l2∞) : (X,Y ) ∈ Norm(T2)

}
.

Proof. Case 1. Suppose that ‖T1‖ > ‖T2‖. We claim the following.

Claim. Nrad(T ) =
{
± [e∗1, (X,Y )] ∈ Π(l2∞) : (X,Y ) ∈ Norm(T1)

}
.

Notice that [e∗1, (X,Y )] ∈ Nrad(T ) for every (X,Y ) ∈ Norm(T1). Indeed, by
Theorem 2.2,

|e∗1(T (X,Y ))| = |T1(X,Y )| = ‖T1‖ = ‖T‖ = v(T ).

Hence we have{
± [e∗1, (X,Y )] ∈ Π(l2∞) : (X,Y ) ∈ Norm(T1)

}
⊆ Nrad(T ).

Let [z∗, (X,Y )] ∈ Nrad(T ). Write z∗ = z1e
∗
1 + z2e

∗
2 for some (z1, z2) ∈ Sl21

. We will

show that z∗ = ±e∗1 and (X,Y ) ∈ Norm(T1). We claim that z2 = 0. Assume that
z2 6= 0. By Theorem 2.2, it follows that

‖T1‖ = ‖T‖ = v(T ) = |z∗(T (X,Y ))| ≤ |z1| |T1(X,Y )|+ |z2| |T2(X,Y )|
≤ |z1| ‖T1‖+ |z2| ‖T2‖ < |z1| ‖T1‖+ |z2| ‖T1‖ = ‖T1‖,

which is a contradiction. Hence, z∗ = ±e∗1. Without loss of generality we may
assume that z∗ = e∗1. Notice that (X,Y ) ∈ Norm(T1). Indeed, by Theorem 2.2,

‖T1‖ = ‖T‖ = v(T ) = |e∗1(T (X,Y ))| = |T1(X,Y )|.

Therefore [z∗, (X,Y )] = [e∗1, (X,Y )] for some (X,Y ) ∈ Norm(T1). As a result

Nrad(T ) ⊆
{
± [e∗1, (X,Y )] ∈ Π(l2∞) : (X,Y ) ∈ Norm(T1)

}
.

Case 2. Suppose that ‖T1‖ = ‖T2‖.

Subcase 1. Assuming ((1, 1), (1, 1)), ((1,−1), (1,−1)) /∈ Norm(T1)∩Norm(T2), we
claim the following.

Claim. Nrad(T ) = F .

By a similar argument in the proof of Case 1, F ⊆ Nrad(T ). Let [z∗, (X,Y )] ∈
Nrad(T ). Write z∗ = z1e

∗
1 +z2e

∗
2 for some (z1, z2) ∈ Sl21

. We will show that z1z2 = 0.
Assume that z1z2 6= 0. By Theorem 2.2, it follows that

‖T1‖ = v(T ) = |z∗(T (X,Y ))| = |z1| |T1(X,Y )|+ |z2| |T2(X,Y )|
≤ |z1| ‖T1‖+ |z2| ‖T2‖ ≤ |z1| ‖T1‖+ |z2| ‖T1‖ = ‖T1‖,
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which shows that ‖Tj‖ = |Tj(X,Y )| (j = 1, 2). Hence, (X,Y ) ∈ Norm(T1) ∩
Norm(T2). Write X = (u1, v1) and Y = (u2, v2) for some (u2, v2) ∈ Sl2∞

. Since

[z∗, (X,Y )] ∈ Π(l2∞), for j = 1, 2,

1 = z1uj + z2vj ≤ |z1| |uj |+ |z2| |vj | ≤ |z1|+ |z2| = 1,

which implies that |uj | = |vj | = 1 for j = 1, 2. Without loss of generality, we
may assume that u1 = v1 = 1. Since ((1, 1), (1, 1)), ((1,−1), (1,−1)) /∈ Norm(T1) ∩
Norm(T2), we have either (X = (1, 1), Y = (1,−1)) or (X = (1,−1), Y = (1, 1)).

If X = (1, 1), Y = (1,−1), then

1 = z∗(X) = z∗(Y ) = z1 − z2 = z1 + z2,

so we have z2 = 0. This is a contradiction. If X = (1,−1), Y = (1, 1), then

1 = z∗(X) = z∗(Y ) = z1 + z2 = z1 − z2,

and so z2 = 0. This is also a contradiction. Therefore, z1z2 = 0. If z1 = 0, then
z∗ = ±e∗2 and (X,Y ) ∈ Norm(T2). If z∗ = e∗2, then [z∗, (X,Y )] = [e∗2, (X,Y )] ∈
F . If z∗ = −e∗2, then [z∗, (X,Y )] = −[e∗2, (−X,−Y )] ∈ F because (−X,−Y ) ∈
Norm(T2). Hence, Nrad(T ) ⊆ F . We have shown the claim.

Subcase 2. Assume that ((1, 1), (1, 1)) /∈ Norm(T1)∩Norm(T2) and ((1,−1), (1,−1)) ∈
Norm(T1) ∩Norm(T2). We claim the following.

Claim. If T1((1,−1), (1,−1)) · T2((1,−1), (1,−1)) ≥ 0, then Nrad(T ) = F .

By a similar argument in the proof of Case 1,

F ∪
{
± [ze∗1 + (z − 1)e∗2, ((1,−1), (1,−1))] : 0 < z < 1

}
⊆ Nrad(T ).

Let [z∗, (X,Y )] ∈ Nrad(T ). Write z∗ = z1e
∗
1 + z2e

∗
2 for some (z1, z2) ∈ Sl21

. Suppose

that z1z2 = 0. If z1 = 0, then z∗ = ±e∗2 and (X,Y ) ∈ Norm(T2). If z∗ = e∗2, then
[z∗, (X,Y )] = [e∗2, (X,Y )] ∈ F . If z∗ = −e∗2, then [z∗, (X,Y )] = −[e∗2, (−X,−Y )] ∈
F because (−X,−Y ) ∈ Norm(T2). Suppose that z1z2 6= 0. Since 1 = z∗(X) =
z∗(Y ), z∗ = ±(z0e1 + (z0 − 1)e2) for some 0 < z0 < 1. By the same argument
as in the proof of Subcase 1 and our hypothesis, we have either (X = (1, 1), Y =
(1,−1)), (X = (1,−1), Y = (1, 1)), or (X = (1,−1), Y = (1,−1)). Using the same
argument as in the proof of Subcase 1 we know that X = (1,−1) and Y = (1,−1).
We will show that T1((1,−1), (1,−1)) · T2((1,−1), (1,−1)) < 0. Assume that

T1((1,−1), (1,−1)) · T2((1,−1), (1,−1)) ≥ 0.

By Theorem 2.2, it follows that

‖T1‖ = v(T ) = |z∗(T ((1,−1), (1,−1)))|
= |z0T1((1,−1), (1,−1)) + (z0 − 1)T2((1,−1), (1,−1))|
< |z0| ‖T1‖+ |z0 − 1| ‖T2‖ ≤ |z0| ‖T1‖+ |z0 − 1| ‖T1‖ = ‖T1‖,

which is impossible. Therefore we have T1((1,−1), (1,−1))·T2((1,−1), (1,−1)) < 0.
Notice that

[z∗, (X,Y )] = ±[z0e
∗
1 + (z0 − 1)e∗2, ((1,−1), (1,−1))]

⊆ F ∪
{
± [ze∗1 + (z − 1)e∗2, ((1,−1), (1,−1))] : 0 < z < 1

}
.
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Therefore, we have shown that if T1((1,−1), (1,−1)) ·T2((1,−1), (1,−1)) ≥ 0, then
Nrad(T ) = F and that if T1((1,−1), (1,−1)) · T2((1,−1), (1,−1)) < 0, then

Nrad(T ) = F ∪
{
± [ze∗1 + (z − 1)e∗2, ((1,−1), (1,−1))] : 0 < z < 1

}
.

Subcase 3. Assume that ((1,−1), (1,−1)) /∈ Norm(T1)∩Norm(T2) and ((1, 1), (1, 1)) ∈
Norm(T1) ∩Norm(T2).

By analogous arguments as in the proof of Subcase 2, we conclude that if
T1((1, 1), (1, 1))·T2((1, 1), (1, 1)) < 0, then Nrad(T ) = F and that if T1((1, 1), (1, 1))·
T2((1, 1), (1, 1)) ≥ 0, then

Nrad(T ) = F ∪
{
± [ze∗1 + (1− z)e∗2, ((1, 1), (1, 1))] : 0 < z < 1

}
.

Subcase 4. Assume that ((1,−1), (1,−1)), ((1, 1), (1, 1)) ∈ Norm(T1) ∩Norm(T2).
The proof is analogously similar to earlier subcases which we will skip here.

Case 3. Suppose that ‖T2‖ > ‖T1‖. We claim the following.

Claim. Nrad(T ) =
{
± [e∗2, (X,Y )] ∈ Π(l2∞) : (X,Y ) ∈ Norm(T2)

}
.

Notice that [e∗2, (X,Y )] ∈ Nrad(T ) for every (X,Y ) ∈ Norm(T2). Indeed, by
Theorem 2.2,

|e∗1(T (X,Y ))| = |T1(X,Y )| = ‖T1‖ = ‖T‖ = v(T ).

Therefore we have{
± [e∗2, (X,Y )] ∈ Π(l2∞) : (X,Y ) ∈ Norm(T2)

}
⊆ Nrad(T ).

Let [z∗, (X,Y )] ∈ Nrad(T ). Write z∗ = z1e
∗
1 + z2e

∗
2 for some (z1, z2) ∈ Sl21

. We will

show that z∗ = ±e∗2 and (X,Y ) ∈ Norm(T2). We claim that z1 = 0. Assume that
z1 6= 0. By Theorem 2.2, it follows that

‖T2‖ = ‖T‖ = v(T ) = |z∗(T (X,Y ))| ≤ |z1| |T1(X,Y )|+ |z2| |T2(X,Y )|
≤ |z1| ‖T1‖+ |z2| ‖T2‖ < |z1| ‖T2‖+ |z2| ‖T2‖ = ‖T2‖,

which is a contradiction. Hence, z∗ = ±e∗2. Without loss of generality we may
assume that z∗ = e∗2. Notice that (X,Y ) ∈ Norm(T2). Indeed, by Theorem 2.2,

‖T2‖ = ‖T‖ = v(T ) = |e∗2(T (X,Y ))| = |T2(X,Y )|.
Hence, [z∗, (X,Y )] = [e∗2, (X,Y )] for some (X,Y ) ∈ Norm(T2). Hence,

Nrad(T ) ⊆
{
± [e∗2, (X,Y )] ∈ Π(l2∞) : (X,Y ) ∈ Norm(T2)

}
which the claim follows and the proof is completed. �

For k = 1, . . . ,m, we define

Vn,m(k) =
{(

(v
(1)
1 , . . . , v

(1)
k−1, 1, v

(1)
k+1, . . . , v

(1)
m ), . . . ,

(v
(n)
1 , . . . , v

(n)
k−1, 1, v

(n)
k+1, . . . , v

(n)
m )

)
: −1 ≤ v(i)

j ≤ 1 for 1 ≤ i ≤ n, 1 ≤ j 6= k ≤ m
}
.

We characterize all numerical radius peak mappings in L(mln∞ : ln∞) for n,m ≥ 2.
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Theorem 2.4. Let T ∈ L(nlm∞ : lm∞) with T = (T1, . . . Tm) for some Tk ∈ L(nlm∞)
(k = 1, . . . ,m). Then T is a numerical radius peak mapping if and only if there is
1 ≤ k0 ≤ m such that ‖Tk0

‖ > ‖Tk‖ for every 1 ≤ k 6= k0 ≤ m and∣∣∣Vn,m(k0) ∩Norm(Tk0)
∣∣∣ = 1.

Proof. (⇒). Claim 1. There is 1 ≤ k0 ≤ m such that ‖Tk0
‖ > ‖Tk‖ for every

1 ≤ k 6= k0 ≤ m.

Assume the contrary. Let 1 ≤ k1 6= k2 ≤ m such that ‖Tki
‖ = ‖T‖ for i = 1, 2.

By Theorem 2.1, there are (X
(i)
1 , . . . , X

(i)
n ) ∈ Norm(T ) ∩ Wn,m(ki) for i = 1, 2.

Hence, ±
[
e∗ki
, (X

(i)
1 , . . . , X

(i)
n )
]
∈ Π(lm∞) for i = 1, 2. By Theorem 2.2, it follows

that for i = 1, 2,∣∣∣e∗ki

(
T (X

(i)
1 , . . . , X(i)

n )
)∣∣∣ =

∣∣∣Tki

(
X

(i)
1 , . . . , X(i)

n

)∣∣∣ = ‖Tki
‖ = ‖T‖ = v(T ).

Hence, ±
[
e∗ki
, (X

(i)
1 , . . . , X

(i)
n )
]
∈ Nrad(T ) for i = 1, 2. Notice that[

e∗k1
, (X

(1)
1 , . . . , X(1)

n )
]
6= ±

[
e∗k2

, (X
(2)
1 , . . . , X(2)

n )
]
.

This is a contradiction because T is a numerical radius peak mapping. We have
shown Claim 1.

Let Nrad(T ) =
{
±
[
z∗, (X1, . . . , Xn)

] }
. Write z∗ =

∑
1≤j≤m zje

∗
j ∈ Slm1

.

Claim 2. zj = 0 for every j 6= k0.

Assume that zk 6= 0 for some k 6= k0. By Claim 1 and Theorem 2.2, it follows
that

v(T ) =
∣∣∣z∗(T (X1, . . . , Xn))

∣∣∣ = |zk| |Tk(X1, . . . , Xn)|+
∑

1≤j 6=k≤m

|zj | |Tj(X1, . . . , Xn)|

≤ |zk| ‖Tk‖+
∑

1≤j 6=k≤m

|zj | ‖Tj‖ < |zk| ‖T‖+
∑

1≤j 6=k≤m

|zj | ‖T‖ = ‖T‖ = v(T ),

which is a contradiction. Hence, Claim 2 holds and z∗ = ±e∗k0
. Without loss of

generality we may assume that z∗ = e∗k0
.

Claim 3. Vn,m(k0)
⋂

Norm(Tk0
) = {(X1, . . . , Xn)}.

Notice that (X1, . . . , Xm) ∈ Vn,m(k0)
⋂

Norm(Tk0). Indeed, by Theorem 2.2,∣∣∣Tk0(X1, . . . , Xn)
∣∣∣ =

∣∣∣e∗k0
(T (X1, . . . , Xn))

∣∣∣ = v(T ) = ‖T‖ = ‖Tk0‖,

which shows that (X1, . . . , Xn) ∈ Norm(Tk0
). Obviously, (X1, . . . , Xn) ∈ Vn,m(k0)

because
[
e∗k0

, (X1, . . . , Xn)
]

=
[
z∗, (X1, . . . , Xn)

]
∈ Π(lm∞). Suppose that (X

′

1, . . . , X
′

n) ∈
Vn,m(k0)

⋂
Norm(Tk0

). We will show that (X
′

1, . . . , X
′

n) = (X1, . . . , Xn). Assume

that (X
′

1, . . . , X
′

n) 6= (X1, . . . , Xn). Notice that [e∗k0
, (X

′

1, . . . , X
′

n)] ∈ Π(lm∞). by
Theorem 2.2, it follows that∣∣∣e∗k0

(T (X
′

1, . . . , X
′

n))
∣∣∣ =

∣∣∣Tk0
(X
′

1, . . . , X
′

n)
∣∣∣ = ‖Tk0

‖ = ‖T‖ = v(T ),
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which shows that[
e∗k0

, (X
′

1, . . . , X
′

n)
]
∈ Nrad(T ) =

{
±
[
e∗k0

, (X1, . . . , Xn)
]}
.

Hence, (X
′

1, . . . , X
′

n) = (X1, . . . , Xn). Therefore,

Vn,m(k0)
⋂

Norm(Tk0) = {(X1, . . . , Xn)}.

(⇐). Suppose that Vn,m(k0)
⋂

Norm(Tk0
) = {(Y1, . . . , Yn)}.

Claim 4. Nrad(T ) =
{
±
[
e∗k0

, (Y1, . . . , Ym)
]}
.

By a similar argument as in the proof of Claim 3,
[
e∗k0

, (Y1, . . . , Yn)
]
∈ Nrad(T ).

Let
[
z∗, (X1, . . . , Xn)

]
∈ Nrad(T ) with z∗ =

∑
1≤j≤m zje

∗
j ∈ Slm1

. By a similar

argument as in the proof of Claim 2, z∗ = ±e∗k0
. Without loss of generality we may

assume that z∗ = e∗k0
. By a similar argument as in the proof of Claim 3,

(X1, . . . , Xn) ∈ Vn,m(k0)
⋂

Norm(Tk0) = {(Y1, . . . , Yn)}.

Hence, (X1, . . . , Xn) = (Y1, . . . , Yn) and
[
z∗, (X1, . . . , Xn)

]
=
[
e∗k0

, (Y1, . . . , Yn)
]
.

Hence, Claim 4 holds. Therefore, T is a numerical radius peak mapping. �
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