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Abstract. We introduce the notion of an H-primitive being the limit of a se-
quence of absolutely continuous functions satisfying certain conditions and use

it to formulate an alternative definition of the Henstock-Kurzweil integral on

a closed bounded interval. Furthermore, the definition provides a characteri-
sation of the primitive of a Henstock-Kurzweil integrable function.

1. Introduction

The Henstock-Kurzweil integral has several alternative definitions. In particu-
lar, it has a Riesz-type definition. More precisely, a function f defined on a closed
bounded interval [a, b] is Henstock-Kurzweil integrable there if and only if there ex-
ists a control-convergent sequence {φn} of step functions such that φn(x) → f(x)
for almost all x in [a, b] as n → ∞ (see [1, Definition 10.1]). Note that in this
definition we begin with a sequence of elementary functions, namely the step func-
tions φn, converging to the function f which will be Henstock-Kurzweil integrable
if the sequence satisfies certain condition, in this case control convergence. Note
that step functions are Lebesgue integrable and primitives of Lebesgue integrable
functions are absolutely continuous.

In this short paper, we shall show that we can also define the Henstock-Kurzweil
integral if we begin with a sequence of primitives, of Lebesgue integrable functions,
converging to a function which will be the primitive of a Henstock-Kurzweil inte-
grable function if the sequence has certain properties which will be made precise in
due course.

2. Preliminaries

Throughout this paper we shall let a closed bounded interval [a, b] be fixed and
consider real-valued point functions f defined on [a, b].

A set {(Ii, xi) : i = 1, 2, . . . , n} or simply {(Ii, xi)}ni=1 of interval-point pairs is
called a partial division of [a, b] if I1, I2, . . . , In are non-overlapping closed subin-
tervals of [a, b] such that

⋃n
i=1 Ii ⊆ [a, b] and xi ∈ Ii for each i. We call xi the

associated point of Ii and the collection of the intervals Ii a partial partition of
[a, b]. A partial division D∗ of [a, b] refines or is a refinement of another partial
division D of [a, b] if for each (I, x) ∈ D∗, we have I ⊆ J for some (J, y) ∈ D. If P ∗

denotes the collection of intervals I in D∗ and P denotes the collection of intervals
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J in D, then P ∗ and P are partial divisions, and we also say that P ∗ is a refinement
of P .

A division of [a, b] is a partial division {(Ii, xi)}ni=1 such that the union of Ii is
[a, b]. Note that a division D = {(Ii, xi)}ni=1 of [a, b] is essentially a selection of
points in [a, b] of the form

a = u1 ≤ x1 ≤ v1 = u2 ≤ x2 ≤ v2 ≤ · · · ≤ un ≤ xn ≤ vn = b

where Ii = [ui, vi] for i = 1, 2, ..., n. We call the collection of the intervals Ii of a
division {(Ii, xi)}ni=1 of [a, b] a partition of [a, b].

Let δ : [a, b] → (0,∞) be a positive function. We call δ a gauge on [a, b]. An
interval-point pair (I, x) is δ-fine if I ⊆ (x − δ(x), x + δ(x)). A partial division
{(Ii, xi)}ni=1 of [a, b] is δ-fine if (Ii, xi) is δ-fine for each i = 1, 2, . . . , n. Since divi-
sions are themselves partial divisions, δ-fine divisions of [a, b] are similarly defined.
A gauge δ1 is said to be finer than a gauge δ2 on [a, b] if for every x ∈ [a, b] we have
δ1(x) ≤ δ2(x).

We shall next define the Henstock-Kurzweil integral. For brevity and where there
is no ambiguity, D = {(I, x)} shall denote a finite collection of interval-point pairs
(I, x) and have its corresponding Riemann sum denoted by (D)

∑
f(x) |I| where

|I| denotes the length of the interval I.

Definition 2.1. A function f is said to be Henstock-Kurzweil integrable, or briefly
HK-integrable, on [a, b] to a real number A if for every ε > 0, there exists a gauge
δ on [a, b] such that for every δ-fine division D = {(I, x)} of [a, b], we have∣∣∣(D)

∑
f(x) |I| −A

∣∣∣ < ε.

We write (H)
∫ b
a
f(x)dx = A. The HK-integrability of f on any subinterval of [a, b]

is similarly defined.

If a real-valued function F is defined on [a, b], for each [u, v] ⊆ [a, b], we will
write F (u, v) = F (v)− F (u). If P = {[ui, vi]}ni=1 is a partial partition of [a, b], for
brevity we will sometimes write (P )

∑
|F (u, v)| for

∑n
i=1|F (vi)−F (ui)| where [u, v]

represents the intervals [ui, vi].
We will provide an alternative definition of the HK-integral using primitives in

the next section. To this end, we need the following definitions.

Definition 2.2. A function F is said to be absolutely continuous, or briefly AC,
on [a, b] if for every ε > 0 there exists η > 0 such that for any partial partition
P = {[u, v]} of [a, b] satisfying the condition (P )

∑
(v − u) < η, we have

(P )
∑
|F (u, v)| < ε.

Definition 2.3. Let X ⊆ [a, b]. A function F defined on [a, b] is said to be AC∗(X)
if for every ε > 0 there exists η > 0 such that for every partial partition P =
{[u, v]} of [a, b] with end points u or v belonging to Y satisfying the condition that
(P )
∑

(v − u) < η, we have

(P )
∑
|F (u, v)| < ε.

Definition 2.4. If [a, b] is the union of a sequence {Xn} of closed sets such that
F is AC∗(Xn) for each n = 1, 2, ..., then F is said to be ACG

∗
on [a, b].
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3. Main Results

We shall first prove the following convergence theorem which serves as a motiva-
tion for the alternative definition of the HK-integral that we will formulate in this
paper. In what follows, a property is said to hold almost everywhere in [a, b], or
equivalently for almost all x in [a, b], if it holds everywhere in [a, b] except perhaps
in a set of measure zero.

Theorem 3.1. Let fn be HK-integrable on [a, b] with primitives Fn for n = 1, 2, ....
Suppose that fn(x)→ f(x) for almost all x in [a, b] and Fn(x)→ F (x) as n→∞
for all x ∈ [a, b]. Then the function f is HK-integrable on [a, b] with primitive F
if and only if the following condition is satisfied.
(+) For every ε > 0 there is M(x) taking positive integer values such that for

infinitely many positive integers m(x) ≥ M(x) there is δ(x) > 0 and for any
δ-fine division D = {[u, v], ξ} of [a, b] we have

(D)
∑∣∣Fm(ξ)(u, v)− F (u, v)

∣∣ < ε.

Proof. We may assume that fn(x) → f(x) everywhere as n → ∞. Suppose f is
HK-integrable on [a, b] with primitive F . Given ε > 0 and x ∈ [a, b], there is a
positive integer M(x) such that whenever m(x) ≥M(x), we have

|fm(x)(x)− f(x)| < ε.

Since each fn is HK-integrable on [a, b], there is a gauge δn on [a, b] such that for

any δn-fine division D = {(I, x)} of [a, b], we have

(D)
∑
|Fn(I)− fn(x) |I| | < ε(2−n).

Also, there is a gauge δ0 on [a, b] such that for any δ0-fine division D = {(I, x)} of

[a, b], we have

(D)
∑
|F (I)− f(x) |I| | < ε.

Now for every m(x) ≥M(x), we define a gauge δ on [a, b] given by

δ(x) = min(δm(x)(x), δ0(x))

for all x ∈ [a, b]. Then for any δ-fine division D = {(I, x)} of [a, b], we have

(D)
∑
|Fm(x)(I)− F (I)| ≤ (D)

∑
|Fm(x)(I)− fm(x)(x) |I| |

+(D)
∑
|fm(x)(x)− f(x)| |I|

+(D)
∑
|f(x) |I| − F (I)|

<

∞∑
n=1

ε
(
2−n

)
+ ε(b− a) + ε

= 2ε+ ε(b− a).

Hence we have proved the result for every positive integer m(x) ≥ M(x). Con-
versely, suppose the hypotheses are satisfied. Using the same notations as above,
for each x ∈ [a, b] we choose a positive integer m(x) ≥M(x) such that

|fm(x)(x)− f(x)| < ε.
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Then we modify the gauge δ so that δ(x) ≤ δm(x)(x) for each x ∈ [a, b]. Thus for

any δ-fine division D = {(I, x)} of [a, b], we obtain

(D)
∑
|f(x) |I| − F (I)| ≤ (D)

∑∣∣f(x)− fm(x)(x)
∣∣ |I|

+(D)
∑∣∣fm(x)(x) |I| − Fm(x)(I)

∣∣
+(D)

∑∣∣Fm(x)(I)− F (I)
∣∣

< ε(b− a) +

∞∑
n=1

ε
(
2−n

)
+ ε

= 2ε+ ε(b− a).

Hence f is HK-integrable with primitive F on [a, b]. �

In Theorem 3.1, it is immaterial whether we require the condition fn(x)→ f(x)
as n → ∞ to hold for all, or almost all, x in [a, b] because in the latter case we
can always assume fn(x) = f(x) = 0 for x in the set of measure zero where the
condition does not hold, and write fn(x) → f(x) as n → ∞ for all x in [a, b]. It
changes nothing as far as the primitives are concerned because if f(x) = g(x) for
almost all x in [a, b], then f is HK-integrable on [a, b] if and only if g is HK-
integrable there and the integral values are equal [2, Proposition 1.1]. Also note
that in the theorem, it is necessary that condition (+) holds for all m(x) ≥M(x).
However, it is sufficient to have only infinitely many m(x) ≥M(x) in order that f
is HK-integrable with primitive F .

We shall call condition (+) in Theorem 3.1 the H-condition on [a, b] and say
that {Fn} satisfies the H-condition on [a, b].

Definition 3.2. A continuous function F is called an H-primitive on [a, b] if there
is a sequence {Fn} of functions which are AC on [a, b] such that Fn(x)→ F (x) as
n → ∞ for all x ∈ [a, b] and {Fn} satisfies the H-condition on [a, b]. We shall call
{Fn} an H-sequence of F on [a, b].

Obviously the set of all H-primitives on [a, b] is closed under addition and scalar
multiplication.

It is well known that functions which are AC on [a, b] are primitives of Lebesgue
integrable functions there. Thus an H-sequence is necessarily a sequence of primi-
tives of Lebesgue integrable functions.

The following result shows that the H-primitives include all primitives of HK-
integrable functions.

Theorem 3.3. If a function F is the primitive of an HK-integrable function on
[a, b], then it is an H-primitive on [a, b].

Proof. Since F is the primitive of an HK-integrable function on [a, b], it is con-
tinuous and ACG∗ on [a, b] (see for example, [1, Theorem 6.13]). Hence there is
a sequence {Xn} of closed sets with union [a, b] such that F is AC∗(Xn) for each
n. We may assume that for each n we have Xn ⊆ Xn+1 and a, b ∈ Xn. Now for

each n = 1, 2, ..., let (a, b)\Xn =
⋃∞
i=1(a

(n)
i , b

(n)
i ), where b

(n)
i ≤ a(n)i+1 for each i, and
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define Fn(x) = F (x) when x ∈ Xn, in particular Fn(a) = F (a) and Fn(b) = F (b),
and

Fn(x) = F (a
(n)
i ) +

F (b
(n)
i )− F (a

(n)
i )

b
(n)
i − a(n)i

(x− a(n)i )

when x ∈ (a
(n)
i , b

(n)
i ). It is easy to see that Fn(x) → F (x) as n → ∞ for all

x ∈ [a, b]. We shall prove that each Fn is AC on [a, b]. To this end we first let ε > 0
be given and let n be fixed. Since F is AC∗(Xn), there exists η1 > 0 such that for
every partial partition P = {[u, v]} of [a, b] with end points u or v belonging to Xn

satisfying the condition that (P )
∑

(v − u) < η1, we have

(P )
∑
|F (u, v)| < ε

3
. (3.1)

Choose a positive integer N such that
∑∞
i=N+1(b

(n)
i − a

(n)
i )< η1. Since a

(n)
i , b

(n)
i ∈

Xn by (3.1),
∞∑

i=N+1

∣∣∣F (a
(n)
i , b

(n)
i )
∣∣∣<ε

3
. (3.2)

Since on each [a
(n)
i , b

(n)
i ] the function Fn is defined linearly, and is thus AC there,

we choose η2 > 0 such that for every partial partition P = {[u, v]} of
⋃N
i=1[a

(n)
i , b

(n)
i ]

satisfying the condition that (P )
∑

(v − u) < η2, we have

(P )
∑
|Fn(u, v)| < ε

3
. (3.3)

Take any partial partition P = {[u, v]} of [a, b] such that (P )
∑

(v − u) < η where

η := min(η1, η2). Let Yn =
⋃N
i=1(a

(n)
i , b

(n)
i ) and Zn =

⋃∞
i=N+1(a

(n)
i , b

(n)
i ). Consider

the following cases. (1) u, v ∈ Xn; (2) u, v ∈ Yn; (3) u, v ∈ Zn; (4a) u ∈ Xn, v ∈ Yn;
(4b) u ∈ Yn, v ∈ Xn; (5a) u ∈ Xn, v ∈ Zn; (5b) u ∈ Zn, v ∈ Xn; (6) u ∈ Yn, v ∈ Zn.

Note that it is not possible to have u ∈ Zn, v ∈ Yn. In (4a), v ∈ (a
(n)
q , b

(n)
q ) for some

positive integer q ≤ N . We write [u, v] = [u, a
(n)
q ]∪ [a

(n)
q , v] and note that F (u, v) =

F (u, a
(n)
q ) + F (a

(n)
q , v). In (4b), u ∈ (a

(n)
p , b

(n)
p ) for some positive integer p ≤ N .

We write [u, v] = [u, b
(n)
p ] ∪ [b

(n)
p , v] and note that F (u, v) = F (u, b

(n)
p ) + F (b

(n)
p , v).

Likewise, in (5a), v ∈ (a
(n)
s , b

(n)
s ) for some positive integer s > N and we write

[u, v] = [u, a
(n)
s ] ∪ [a

(n)
s , v], while in (5b), u ∈ (a

(n)
r , b

(n)
r ) for some positive integer

r > N and we write [u, v] = [u, b
(n)
r ] ∪ [b

(n)
r , v]. In (6), u ∈ (a

(n)
p , b

(n)
p ) for some

positive integer p ≤ N and v ∈ (a
(n)
s , b

(n)
s ) for some positive integer s > N . We

write [u, v] = [u, b
(n)
p ] ∪ [b

(n)
p , a

(n)
s ] ∪ [a

(n)
s , v] and note that

Fn(u, v) = Fn(u, b(n)p ) + Fn(b(n)p , a(n)s ) + Fn(a(n)s , v).

Let P1 be the collection of all intervals [u, v] from (1), all intervals [u, a
(n)
q ] from

(4a), all intervals [b
(n)
p , v] from (4b), all intervals [u, a

(n)
s ] from (5a), all intervals

[b
(n)
r , v] from (5b), and all intervals [b

(n)
p , a

(n)
s ] from (6). Let P2 be the collection

of all intervals [u, v] from (2), all intervals [a
(n)
q , v] from (4a), all intervals [u, b

(n)
p ]

from (4b), and all intervals [u, b
(n)
p ] from (6). Let P3 be the collection of all intervals
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[u, v] from (3), all intervals [a
(n)
s , v] from (5a), all intervals [u, b

(n)
r ] from (5b), and

all intervals [a
(n)
s , v] from (6). Clearly P1 ∪ P2 ∪ P3 is a refinement of P and

(Pi)
∑
|I| ≤ (P1 ∪ P2 ∪ P3)

∑
|I| = (P )

∑
|I| < η

for i = 1, 2, 3 where I = [u, v] denotes a typical interval in the partitions Pi and P .
Since for every [u, v] ∈ P1 we have u, v ∈ Xn, applying (3.1) yields

(P1)
∑
|Fn(u, v)| = (P1)

∑
|F (u, v)|

<
ε

3
.

On the other hand, since P2 is a partial partition of Yn and (P2)
∑
|I| < η ≤ η2,

by (3.3) we obtain

(P2)
∑
|Fn(u, v)| < ε

3
.

Next, if [u, v] ∈ P3 where u, v ∈ Zn then u ∈ (a
(n)
p , b

(n)
p ) and v ∈ (a

(n)
q , b

(n)
q ) for

some positive integers p and q where p ≤ q. If p = q, then

|Fn(u, v)| =

∣∣∣∣∣F (b
(n)
p )− F (a

(n)
p )

b
(n)
p − a(n)p

(v − u)

∣∣∣∣∣
≤

∣∣∣F (a(n)p , b(n)p )
∣∣∣ .

Otherwise,

|Fn(u, v)| =

∣∣∣∣∣F (b
(n)
q )− F (a

(n)
q )

b
(n)
q − a(n)q

(v − a(n)q )− F (b
(n)
p )− F (a

(n)
p )

b
(n)
p − a(n)p

(u− a(n)p )

∣∣∣∣∣
≤

∣∣∣F (a(n)q , b(n)q )
∣∣∣+
∣∣∣F (a(n)p , b(n)p )

∣∣∣ .
For intervals in P3 of the form [a

(n)
s , v], we have∣∣∣Fn(a(n)s , v)

∣∣∣ =

∣∣∣∣∣F (b
(n)
s )− F (a

(n)
s )

b
(n)
s − a(n)s

(v − a(n)s )

∣∣∣∣∣
≤

∣∣∣F (a(n)s , b(n)s )
∣∣∣ .

Similarly, for intervals in P3 of the form [u, b
(n)
r ], we have∣∣∣Fn(u, b(n)r )

∣∣∣ =

∣∣∣∣∣F (b
(n)
r )− F (a

(n)
r )

b
(n)
r − a(n)r

(b(n)r − u)

∣∣∣∣∣
≤

∣∣∣F (a(n)r , b(n)r )
∣∣∣ .

Consequently, by virtue of (3.2),

(P3)
∑
|Fn(u, v)| ≤

∞∑
i=N+1

∣∣∣F (a
(n)
i , b

(n)
i )
∣∣∣

<
ε

3
.
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Therefore we obtain

(P )
∑
|Fn(u, v)| ≤ (P1)

∑
|Fn(u, v)|+ (P2)

∑
|Fn(u, v)|+ (P3)

∑
|Fn(u, v)|

< ε.

We have thus proved that Fn is AC on [a, b] for each n. Note that the derivative
F ′n of Fn exists almost everywhere in [a, b]. More specifically, F ′n(x) = F ′(x) for
almost all x in Xn, and

F ′n(x) =
F (b

(n)
i )− F (a

(n)
i )

b
(n)
i − a(n)i

when x ∈ (a
(n)
i , b

(n)
i ). Let f be the HK-integrable function on [a, b] of which F

is the primitive, and for each n let fn = F ′n. Evidently, since F ′ = f almost
everywhere in [a, b], fn converges pointwise to f almost everywhere in [a, b]. By
Theorem 3.1, {Fn} is an H-sequence of F on [a, b]. We have therefore proved that
F is an H-primitive on [a, b] as desired. �

The next result shows the conditions for an H-primitive to be a primitive of an
HK-integrable function. Note that a function which is AC on [a, b] is differentiable
almost everywhere in [a, b].

Theorem 3.4. Let F be an H-primitive on [a, b] and {Fn} an H-sequence of F
on [a, b] such that F ′n(x) → f(x) as n → ∞ for almost all x in [a, b]. Then f is
HK-integrable on [a, b] and F is the primitive of f .

Proof. Since {Fn} is an H-sequence of F on [a, b], each Fn is AC on [a, b]. Hence
the derivative F ′n of Fn exists almost everywhere in [a, b] and is Lebesgue integrable,
and thus HK-integrable on [a, b]. Furthermore, since Fn(x)→ F (x) as n→∞ for
all x in [a, b] and F ′n(x) → f(x) as n → ∞ for almost all x in [a, b] where {Fn}
satisfies condition (+), by Theorem 3.1, the function f is HK-integrable on [a, b]
with primitive F . �

With Theorems 3.3 and 3.4, we have thus obtained the following theorem which
provides an alternative definition of the HK-integral.

Theorem 3.5. A function f is HK-integrable on [a, b] with primitive F if and
only if F is an H-primitive on [a, b] and has an H-sequence {Fn} on [a, b] such
that F ′n(x)→ f(x) as n→∞ for almost all x in [a, b].

In fact Theorem 3.5 provides a characterisation of the primitive of an HK-
integrable function.

It is easy to verify the uniqueness of the HK-integral using this alternative
definition. If F and G are H-primitives which have respectively H-sequences {Fn}
and {Gn} on [a, b] such that F ′n(x)→ f(x) and G′n(x)→ f(x) as n→∞ for almost
all x in [a, b], then for every subinterval [c, d] ⊆ [a, b] and for every ε > 0 there is
M(x) taking positive integer values such that for infinitely many positive integers
m(x) ≥ M(x) there is δ(x) > 0 and for any δ-fine division D = {[u, v], ξ} of [c, d]
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we have

|F (c, d)−G(c, d)| ≤ (D)
∑∣∣Fm(ξ)(u, v)− F (u, v)

∣∣
+ (D)

∑∣∣∣F ′m(ξ)(ξ)(v − u)− Fm(ξ)(u, v)
∣∣∣

+ (D)
∑∣∣∣F ′m(ξ)(ξ)− f(ξ)

∣∣∣ (v − u)

+ (D)
∑∣∣∣G′m(ξ)(ξ)− f(ξ)

∣∣∣ (v − u)

+ (D)
∑∣∣∣G′m(ξ)(ξ)(v − u)−Gm(ξ)(u, v)

∣∣∣
+ (D)

∑∣∣Gm(ξ)(u, v)−G(u, v)
∣∣

< ε.

Hence F (c, d) = G(c, d) for every subinterval [c, d] ⊆ [a, b].
Using this alternative definition of the HK-integral many basic properties of the

HK-integral can be verified easily. For instance, we can prove readily that if f is
HK-integrable on [a, b] then it is HK-integrable on every subinterval [c, d] of [a, b]
and that the Denjoy space, which is the space of all HK-integrable functions, is a
vector space.
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