NEW ZEALAND JOURNAL OF MATHEMATICS Volume 54 (2023), 33–47 https://doi.org/10.53733/311

GROUP ACTIONS ON PRODUCT SYSTEMS

VALENTIN DEACONU AND LEONARD HUANG

(Received 22 December, 2022)

Abstract. We introduce the concept of a crossed product of a product system by a locally compact group. We prove that the crossed product of a row-finite and faithful product system by an amenable group is also a row-finite and faithful product system. We generalize a theorem of Hao and Ng about the crossed product of the Cuntz-Pimsner algebra of a C^* -correspondence by a group action to the context of product systems. We present examples related to group actions on k-graphs and to higher rank Doplicher-Roberts algebras.

1. Introduction

Product systems over various discrete semigroups P were introduced by N. Fowler in [7], inspired by work of W. Arveson and studied by several authors (see [1, 3, 16], for example). Several interesting examples of product systems already occur over the semigroup $(\mathbb{N}^k, +)$, where $k \geq 2$, for example product systems associated to k-graphs. A lot of interest was shown for the particular case when the semigroup P embeds in a group Q and the pair (Q, P) is a quasi-lattice ordered group in the sense of Nica.

We first recall the definition of the Toeplitz algebra and of the Cuntz–Pimsner algebra of a product system. We use the covariance condition in Fowler's sense. Next, we introduce the concept of an action of a (locally compact and Hausdorff) group on a product system and then define the associated crossed product product system. We prove that the crossed product of a row-finite and faithful product system by an amenable group is also row-finite and faithful, and, furthermore, we establish a version of the Hao–Ng Theorem (see Theorem 2.10 in [9]) for product systems over \mathbb{N}^k .

Motivations for introducing group actions on product systems come from at least two sources: (i) group actions on higher rank graphs; (ii) the higher rank Doplicher–Roberts algebra defined from k representations of a compact group. We feel that the concept of crossed product of a product system could be used for other purposes, for example to study group actions on topological k-graphs.

2. C*-Algebras of Product Systems

Let us first recall the definition of a product system. Let (P, \cdot) be a discrete monoid with identity e, and let A be a C^* -algebra. A P-indexed product system of

²⁰²⁰ Mathematics Subject Classification 46L05.

Key words and phrases: C^* -correspondence; product system; group action; Cuntz-Pimsner algebra.

We thank the referee for useful comments that greatly improved the exposition of this paper.

V. DEACONU and L. HUANG

 C^* -correspondences over A is a semigroup $\mathsf{Y} = \bigsqcup_{p \in P} \mathsf{Y}_p$ (which can be viewed as a surjective map $\mathsf{Y} \to P$) with the following properties:

- For each $p \in P$, the object Y_p is a C^* -correspondence over A, which we call the *fiber* of Y at p. Its inner product is denoted by $\langle \cdot | \cdot \rangle_{Y_p}$.
- The fiber Y_e of Y at e is ${}_AA_A$, which is A viewed as an A-correspondence over itself.
- For each $p, q \in P$, the semigroup multiplication on Y maps $Y_p \times Y_q$ to Y_{pq} , so we have an A-balanced (compatible with the A-module structure) \mathbb{C} -bilinear map

$$\mathsf{M}_{p,q} \stackrel{\mathrm{df}}{=} \begin{cases} \mathsf{Y}_p \times \mathsf{Y}_q & \to & \mathsf{Y}_{pq} \\ (x,y) & \mapsto & x \cdot y \end{cases}.$$

- For each $p, q \in P \setminus \{e\}$, the map $\mathsf{M}_{p,q} : \mathsf{Y}_p \times \mathsf{Y}_q \to \mathsf{Y}_{pq}$ induces an isomorphism $\overline{\mathsf{M}}_{p,q} : \mathsf{Y}_p \otimes_A \mathsf{Y}_q \to \mathsf{Y}_{pq}$.
- For each $p \in P$, the maps $M_{e,p}$ and $M_{p,e}$ implement, respectively, the left and right actions of A on Y_p . Consequently, $\overline{M}_{p,e} : Y_p \otimes_A (_AA_A) \to Y_p$ is an isomorphism for all $p \in P$.

For each $p \in P$, let $\phi_p : A \to \mathcal{L}(\mathsf{Y}_p)$ denote the left action of A on Y_p by adjointable operators. We say that Y is *essential* if and only if Y_p is an essential A-correspondence, i.e., $\operatorname{Span}(\phi_p[A][\mathsf{Y}_p])$ is dense in Y_p , for each $p \in P$. The map $\overline{\mathsf{M}}_{e,p} : ({}_AA_A) \otimes_A \mathsf{Y}_p \to \mathsf{Y}_p$ is an isomorphism if and only if Y_p is an essential A-correspondence, see Remark 2.2 in [7].

If ϕ_p takes values in the C^* -algebra $\mathcal{K}(\mathsf{Y}_p)$ of compact operators on Y_p for each $p \in P$, then Y is said to be *row-finite* or *proper*, and if ϕ_p is furthermore injective for each $p \in P$, then Y is said to be *faithful*.

There are various C^* -algebras associated to a product system under certain assumptions. For our future reference, let us recall some standard facts.

Let Y be a *P*-indexed product system over A, and let B be a C^* -algebra. A map $\psi : \mathbf{Y} \to B$ is then called a *Toeplitz representation* of **Y** if and only if, writing ψ_p for $\psi|_{\mathbf{Y}_p}$, the following properties hold:

- $\psi_p : \mathbf{Y}_p \to B$ is \mathbb{C} -linear for all $p \in P$.
- $\psi_e : A \to B$ is a C^* -homomorphism, and $\psi_e(\langle \zeta | \eta \rangle_{\mathbf{Y}_p}) = \psi_p(\zeta)^* \psi_p(\eta)$ for all $p \in P$ and $\zeta, \eta \in \mathbf{Y}_p$.
- $\psi_p(\zeta)\psi_q(\eta) = \psi_{pq}(\zeta\eta)$ for all $p, q \in P, \zeta \in \mathsf{Y}_p$, and $\eta \in \mathsf{Y}_q$.

One can construct a C^* -algebra $\mathcal{T}(\mathsf{Y})$ — known as the *Toeplitz algebra* of Y and a Toeplitz representation $i_{\mathsf{Y}} : \mathsf{Y} \to \mathcal{T}(\mathsf{Y})$ of Y such that the pair $(\mathcal{T}(\mathsf{Y}), i_{\mathsf{Y}})$ is universal in the following sense: $\mathcal{T}(\mathsf{Y})$ is generated by $i_{\mathsf{Y}}[\mathsf{Y}]$, and for any Toeplitz representation $\psi : \mathsf{Y} \to B$, there is a C^* -homomorphism $\psi_* : \mathcal{T}(\mathsf{Y}) \to B$ such that $\psi_* \circ i_{\mathsf{Y}} = \psi$.

Let us denote by $\Theta_{\zeta,\eta}$ the rank-one operator $\xi \mapsto \zeta \langle \eta | \xi \rangle_{\mathsf{Y}_p}$. For each $p \in P$, there exists a C^* -homomorphism $\psi^{(p)} : \mathcal{K}(\mathsf{Y}_p) \to B$ obtained as the continuous extension of the map

$$\forall \zeta_1, \ldots, \zeta_n, \eta_1, \ldots, \eta_n \in \mathsf{Y}_p: \qquad \sum_{i=1}^n \Theta_{\zeta_i, \eta_i} \mapsto \sum_{i=1}^n \psi_p(\zeta_i) \psi_p(\eta_i)^*.$$

Note that as $\mathcal{K}(A) \cong A$ (via the identification of $\Theta_{a,b}$ with ab^*), we have $\psi^{(e)} = \psi_e$.

A Toeplitz representation $\psi : \mathbf{Y} \to B$ is then called *Cuntz-Pimsner covariant* (in Fowler's sense) if and only if

$$\forall p \in P, \ \forall a \in \phi_p^{-1}[\mathcal{K}(\mathsf{Y}_p)]: \qquad \psi^{(p)}(\phi_p(a)) = \psi_e(a).$$

One can construct a C^* -algebra $\mathcal{O}(\mathsf{Y})$ — known as the *Cuntz-Pimsner algebra* of Y — and a Cuntz-Pimsner covariant Toeplitz representation $j_{\mathsf{Y}} : \mathsf{Y} \to \mathcal{O}(\mathsf{Y})$ of Y such that the pair $(\mathcal{O}(\mathsf{Y}), j_{\mathsf{Y}})$ is universal in the following sense: $\mathcal{O}(\mathsf{Y})$ is generated by $j_{\mathsf{Y}}[\mathsf{Y}]$, and for any Cuntz-Pimsner covariant Toeplitz representation $\psi : \mathsf{Y} \to B$, there is a C^* -homomorphism $\psi_* : \mathcal{O}(\mathsf{Y}) \to B$ such that $\psi_* \circ j_{\mathsf{Y}} = \psi$.

Example 2.1. A C^* -correspondence X over A gives rise to a product system Y over \mathbb{N} with fibers $Y_n = X^{\otimes n}$ for $n \geq 1$ and $Y_0 = A$. In this case, $\mathcal{T}(Y) = \mathcal{T}(X)$ and $\mathcal{O}(Y) = \mathcal{O}(X)$.

Example 2.2. For a product system $Y \to P$ whose fibers Y_p are nonzero finitedimensional Hilbert spaces, in particular $A = Y_e = \mathbb{C}$, let us fix an orthonormal basis \mathcal{B}_p in Y_p . Then a Toeplitz representation $\psi : Y \to B$ gives rise to a *P*-indexed family $(\psi(\xi) : \xi \in \mathcal{B}_p)_{p \in P}$ of isometries with mutually orthogonal range projections. In this case, $\mathcal{T}(Y)$ is generated by a collection of Cuntz–Toeplitz algebras that interact according to the multiplication maps $\overline{M}_{p,q}$ in Y.

A representation $\psi: \mathsf{Y} \to B$ is Cuntz-Pimsner covariant if

$$\forall p \in P: \qquad \sum_{\xi \in \mathcal{B}_p} \psi(\xi) \psi(\xi)^* = \psi(1).$$

The Cuntz–Pimsner algebra $\mathcal{O}(\mathsf{Y})$ is generated by a collection of Cuntz algebras, so it could be thought of as a multidimensional Cuntz algebra. N. Fowler proved in [6] that if the function $p \mapsto \dim(\mathsf{Y}_p)$ is injective, then the algebra $\mathcal{O}(\mathsf{Y})$ is simple and purely infinite. For other examples of multidimensional Cuntz algebras, see [2].

Example 2.3. A row-finite k-graph with no sources Λ (see [12]) determines a product system $\mathbf{Y} \to \mathbb{N}^k$, with $\mathbf{Y}_0 = A = C_0(\Lambda^0)$ and $\mathbf{Y}_n = \overline{C_c(\Lambda^n)}$ for $n \neq 0$, that yields an isomorphism $\mathcal{O}(\mathbf{Y}) \cong C^*(\Lambda)$.

3. Group Actions on Product Systems and Crossed Products

Given a locally compact group G and a C^* -correspondence X over A, an action of G on X (see [9]) is a pair (α, β) with the following properties:

- α is a strongly continuous action of G on A by C^{*}-automorphisms.
- β is a strongly continuous action of G on X by surjective \mathbb{C} -linear isometries.
- For all $s \in G$, $a \in A$, and $x, y \in X$,

$$\langle \beta_s(x) | \beta_s(y) \rangle_{\mathsf{X}} = \alpha_s(\langle x | y \rangle_{\mathsf{X}}), \qquad \beta_s(xa) = \beta_s(x)\alpha_s(a), \qquad \beta_s(ax) = \alpha_s(a)\beta_s(x).$$

The crossed product $X \rtimes_{\beta} G$ of X by G is defined in [9] as the completion of the $C_c(G, A)$ -bimodule $C_c(G, X)$, and its $(A \rtimes_{\alpha} G)$ -correspondence structure is uniquely determined by the following operations:

$$\begin{aligned} \forall f \in C_c(G, A), \ \forall \zeta, \eta \in C_c(G, \mathsf{X}), \ \forall s \in G: \\ (f\zeta)(s) &= \int_G f(t)\beta_t \big(\zeta \big(t^{-1}s\big)\big) \ \mathrm{d}t, \quad (\zeta f)(s) = \int_G \zeta(t)\alpha_t \big(f\big(t^{-1}s\big)\big) \ \mathrm{d}t, \\ &\langle \zeta | \eta \rangle_{\mathsf{X}\rtimes_\beta G}(s) = \int_G \alpha_{t^{-1}} (\langle \zeta(t) | \eta(ts) \rangle_{\mathsf{X}}) \ \mathrm{d}t. \end{aligned}$$

By the universal property of Cuntz–Pimsner algebras (see [11]), there is an action γ of G on $\mathcal{O}(\mathsf{X})$ satisfying $\gamma_s(j_A(a)) = j_A(\alpha_s(a))$ and $\gamma_s(j_\mathsf{X}(x)) = j_\mathsf{X}(\beta_s(x))$, where (j_A, j_X) is the universal Cuntz–Pimsner representation of (A, X) . For G amenable, it is proven in [9] that

$$\mathcal{O}(\mathsf{X})\rtimes_{\gamma}G\cong\mathcal{O}(\mathsf{X}\rtimes_{\beta}G)$$

Definition 3.1. An action β of a locally compact group G on a product system $\mathsf{Y} \to P$ over A is a P-indexed family $(\beta^p)_{p \in P}$ such that (β^e, β^p) is an action of G on Y_p for each $p \in P$, and furthermore,

$$\forall s \in G, \ \forall \zeta \in \mathsf{Y}_p, \ \forall \eta \in \mathsf{Y}_q: \qquad \beta_s^{pq}(\zeta \eta) = \beta_s^p(\zeta) \beta_s^q(\eta)$$

We will usually denote β^e by α .

Example 3.2. For an essential product system Y indexed by $P = (\mathbb{N}^k, +)$ such that ϕ_p is an injection into $\mathcal{K}(\mathsf{Y}_p)$ for all $p = (p_1, \ldots, p_k) \in \mathbb{N}^k$, universality allows us to define a strongly continuous gauge action $\sigma : \mathbb{T}^k \to \operatorname{Aut}(\mathcal{O}(\mathsf{Y}))$ such that

 $\forall z \in \mathbb{T}^k, \, \forall p \in \mathbb{N}^k, \, \forall a \in A, \, \forall \zeta \in \mathsf{Y}_p: \qquad \sigma_z(a) = a \qquad \text{and} \qquad \sigma_z(j_{\mathsf{Y}}(\zeta)) = z^p j_{\mathsf{Y}}(\zeta).$

Here, $z^p \stackrel{\text{df}}{=} \prod_{i=1}^k z_i^{p_i}$. Then the fixed-point algebra $\mathcal{O}(\mathsf{Y})^{\sigma}$ is C^* -isomorphic to the inductive limit

$$\lim_{p \in \mathbb{N}^k} \mathcal{K}(\mathsf{Y}_p),$$

where the order relation on \mathbb{N}^k is the coordinate-wise order, and for $p \leq q$, the map $\mathcal{K}(\mathsf{Y}_p) \to \mathcal{K}(\mathsf{Y}_q)$ is given by $T \mapsto T \otimes I_{q-p}$.

Example 3.3. For a compact group G and k finite-dimensional unitary representations ρ_i of G on Hilbert spaces \mathcal{H}_i for $i \in \{1, \ldots, k\}$, we can construct a product system Y with fibers

$$\mathsf{Y}_n = \mathcal{H}_1^{\otimes n_1} \otimes \cdots \otimes \mathcal{H}_k^{\otimes n_k},$$

for $n = (n_1, \ldots, n_k) \in \mathbb{N}^k$; see [4]. Then the group *G* acts on each fiber Y_n via the representation $\rho^n = \rho_1^{\otimes n_1} \otimes \cdots \otimes \rho_k^{\otimes n_k}$. This action is compatible with the multiplication maps and commutes with the gauge action of \mathbb{T}^k .

Proposition 3.4. Let β be an action of G on a P-indexed product system Y. Define a multiplication on the disjoint union $\bigsqcup_{p \in P} (Y_p \rtimes_{\beta^p} G)$ of fibers $Y_p \rtimes_{\beta^p} G$ (which are C^* -correspondences over $A \rtimes_{\alpha} G$) as follows: For $\zeta \in C_c(G, Y_p)$ and $\eta \in C_c(G, Y_q)$, the product $\zeta \eta \in C_c(G, Y_{pq})$ is

$$\forall s \in G: \qquad (\zeta \eta)(s) = \int_G \zeta(t) \beta_t^q \left(\eta \left(t^{-1} s \right) \right) \, \mathrm{d}t.$$

Then the semigroup $Y \rtimes_{\beta} G = \bigsqcup_{p \in P} (Y_p \rtimes_{\beta^p} G)$ with this multiplication law is a product system over $A \rtimes_{\alpha} G$, called the crossed product $Y \rtimes_{\beta} G$. If Y is essential, then $Y \rtimes_{\beta} G$ is also essential.

36

Proof. Let us first prove that the multiplication law for $\mathsf{Y} \rtimes_{\beta} G$ is associative on the function-algebra level. Let $p, q, r \in P$, and let $\zeta \in C_c(G, \mathsf{Y}_p)$, $\eta \in C_c(G, \mathsf{Y}_q)$, and $\xi \in C_c(G, \mathsf{Y}_r)$. Then for all $s \in G$,

$$\begin{split} [(\zeta\eta)\xi](s) &= \int_{G} (\zeta\eta)(t)\beta_{t}^{r}\left(\xi\left(t^{-1}s\right)\right) \,\mathrm{d}t \\ &= \int_{G} \left[\int_{G} \zeta(u)\beta_{u}^{q}\left(\eta\left(u^{-1}t\right)\right) \,\mathrm{d}u\right]\beta_{t}^{r}\left(\xi\left(t^{-1}s\right)\right) \,\mathrm{d}t \\ &= \int_{G\times G} \left[\zeta(u)\beta_{u}^{q}\left(\eta\left(u^{-1}t\right)\right)\right]\beta_{t}^{r}\left(\xi\left(t^{-1}s\right)\right) \,\mathrm{d}(u\times t) \\ &= \int_{G\times G} \zeta(u) \left[\beta_{u}^{q}\left(\eta\left(u^{-1}t\right)\right)\beta_{t}^{r}\left(\xi\left(t^{-1}s\right)\right)\right] \,\mathrm{d}(u\times t) \end{split}$$

and

$$\begin{split} [\zeta(\eta\xi)](s) &= \int_{G} \zeta(u) \beta_{u}^{qs} \left((\eta\xi) \left(u^{-1}s \right) \right) \, \mathrm{d}u \\ &= \int_{G} \zeta(u) \beta_{u}^{qs} \left(\int_{G} \eta(t) \beta_{t}^{s} \left(\xi \left(t^{-1}u^{-1}s \right) \right) \, \mathrm{d}t \right) \, \mathrm{d}u \\ &= \int_{G\times G} \zeta(u) \beta_{u}^{qs} \left(\eta(t) \beta_{t}^{s} \left(\xi \left(t^{-1}u^{-1}s \right) \right) \right) \, \mathrm{d}(t \times u) \\ &= \int_{G\times G} \zeta(u) \beta_{u}^{q} (\eta(t)) \beta_{ut}^{s} \left(\xi \left(t^{-1}u^{-1}s \right) \right) \, \mathrm{d}(t \times u) \\ &\quad \text{(By the axioms of a group action.)} \\ &= \int_{G\times G} \zeta(u) \beta_{u}^{q} \left(\eta \left(u^{-1}t \right) \right) \beta_{t}^{s} \left(\xi \left(t^{-1}s \right) \right) \, \mathrm{d}(t \times u). \\ &\quad \text{(By the change of variables } t \mapsto u^{-1}t. \end{split}$$

It follows that for all $p, q \in P$,

$$\begin{cases} C_c(G, \mathbf{Y}_p) \times C_c(G, \mathbf{Y}_q) & \to & C_c(G, \mathbf{Y}_{pq}) \\ (\zeta, \eta) & \mapsto & \zeta\eta \end{cases}$$

is a $C_c(G,A)\text{-balanced}\ \mathbb{C}\text{-bilinear}$ map (take q=e in the associativity calculation), which then induces a $\mathbb{C}\text{-linear}$ map

$$\Omega_{p,q} = \begin{cases} C_c(G,\mathsf{Y}_p) \otimes_{C_c(G,A)} C_c(G,\mathsf{Y}_q) & \to & C_c(G,\mathsf{Y}_{pq}) \\ \sum_{i=1}^n \zeta_i \odot \eta_i & \mapsto & \sum_{i=1}^n \zeta_i \eta_i \\ \end{cases} .$$

Let us show that $\Omega_{p,q}$ extends uniquely to a \mathbb{C} -linear isometry

$$\overline{\Omega}_{p,q}: (\mathsf{Y}_p \rtimes_{\beta^p} G) \otimes_{A \rtimes_{\alpha} G} (\mathsf{Y}_q \rtimes_{\beta^q} G) \to \mathsf{Y}_{pq} \rtimes_{\beta^{pq}} G.$$

Observe that for all $\zeta_1, \ldots, \zeta_n \in C_c(G, \mathsf{Y}_p)$ and $\eta_1, \ldots, \eta_n \in C_c(G, \mathsf{Y}_q)$ we have

$$\begin{split} & \left\|\sum_{i=1}^{n} \zeta_{i} \otimes \eta_{i}\right\|_{(\mathsf{Y}_{p} \rtimes_{\beta^{p}} G) \otimes_{A \rtimes_{\alpha} G} (\mathsf{Y}_{q} \rtimes_{\beta^{q}} G)} \\ &= \left\|\left\langle\sum_{i=1}^{n} \zeta_{i} \otimes \eta_{i}\right|\sum_{j=1}^{n} \zeta_{j} \otimes \eta_{j}\right\rangle_{(\mathsf{Y}_{p} \rtimes_{\beta^{p}} G) \otimes_{A \rtimes_{\alpha} G} (\mathsf{Y}_{q} \rtimes_{\beta^{q}} G)}\right\|_{A \rtimes_{\alpha} G}^{\frac{1}{2}} \\ &= \left\|\sum_{i,j=1}^{n} \langle\zeta_{i} \otimes \eta_{i}|\zeta_{j} \otimes \eta_{j}\rangle_{(\mathsf{Y}_{p} \rtimes_{\beta^{p}} G) \otimes_{A \rtimes_{\alpha} G} (\mathsf{Y}_{q} \rtimes_{\beta^{q}} G)}\right\|_{A \rtimes_{\alpha} G}^{\frac{1}{2}} \\ &= \left\|\sum_{i,j=1}^{n} \langle\eta_{i}|\langle\zeta_{i}|\zeta_{j}\rangle_{\mathsf{Y}_{p} \rtimes_{\beta^{p}} G} \eta_{j}\rangle_{\mathsf{Y}_{q} \rtimes_{\beta^{q}} G}\right\|_{A \rtimes_{\alpha} G}^{\frac{1}{2}} \end{split}$$

and

$$\begin{split} \left\|\sum_{i=1}^{n} \zeta_{i} \eta_{i}\right\|_{\mathbf{Y}_{pq} \rtimes_{\beta^{pq} G}} &= \left\|\left\langle\sum_{i=1}^{n} \zeta_{i} \eta_{i}\right|\sum_{j=1}^{n} \zeta_{j} \eta_{j}\right\rangle_{\mathbf{Y}_{pq} \rtimes_{\beta^{pq} G}}\right\|_{A \rtimes_{\alpha} G}^{\frac{1}{2}} \\ &= \left\|\sum_{i,j=1}^{n} \langle\zeta_{i} \eta_{i}|\zeta_{j} \eta_{j}\rangle_{\mathbf{Y}_{pq} \rtimes_{\beta^{pq} G}}\right\|_{A \rtimes_{\alpha} G}^{\frac{1}{2}}. \end{split}$$

To see that

$$\left\|\sum_{i=1}^{n} \zeta_{i} \otimes \eta_{i}\right\|_{\left(\mathsf{Y}_{p} \rtimes_{\beta^{p}} G\right) \otimes_{A \rtimes_{\alpha} G}\left(\mathsf{Y}_{q} \rtimes_{\beta^{q}} G\right)} = \left\|\sum_{i=1}^{n} \zeta_{i} \eta_{i}\right\|_{\mathsf{Y}_{pq} \rtimes_{\beta^{pq}} G},$$

it thus suffices to show that for all $i, j \in \{1, \dots, n\}$,

$$\left\langle \eta_i \Big| \langle \zeta_i | \zeta_j \rangle_{\mathbf{Y}_p \rtimes_{\beta^p} G} \eta_j \right\rangle_{\mathbf{Y}_q \rtimes_{\beta^q} G} \quad \text{and} \quad \langle \zeta_i \eta_i | \zeta_j \eta_j \rangle_{\mathbf{Y}_{pq} \rtimes_{\beta^{pq}} G}$$

are identical elements of $C_c(G, A)$. Indeed, for all $r \in G$,

$$\begin{split} &\left\langle \eta_{i} \left| \langle \zeta_{i} | \zeta_{j} \rangle_{\mathbf{Y}_{p} \rtimes_{\beta^{p}} G} \eta_{j} \right\rangle_{\mathbf{Y}_{q} \rtimes_{\beta^{q}} G} (r) \\ &= \int_{G} \alpha_{u^{-1}} \left(\left\langle \eta_{i}(u) \right| \left(\langle \zeta_{i} | \zeta_{j} \rangle_{\mathbf{Y}_{p} \rtimes_{\beta^{p}} G} \eta_{j} \right) (ur) \right\rangle_{\mathbf{Y}_{q}} \right) \mathrm{d}u \\ &= \int_{G} \alpha_{u^{-1}} \left(\left\langle \eta_{i}(u) \right| \int_{G} \langle \zeta_{i} | \zeta_{j} \rangle_{\mathbf{Y}_{p} \rtimes_{\beta^{p}} G} (t) \beta_{t}^{q} \left(\eta_{j} \left(t^{-1} ur \right) \right) \mathrm{d}t \right\rangle_{\mathbf{Y}_{q}} \right) \mathrm{d}u \\ &= \int_{G \times G} \alpha_{u^{-1}} \left(\left\langle \eta_{i}(u) \right| \left\langle \zeta_{i} | \zeta_{j} \rangle_{\mathbf{Y}_{p} \rtimes_{\beta^{p}} G} (t) \beta_{t}^{q} \left(\eta_{j} \left(t^{-1} ur \right) \right) \right\rangle_{\mathbf{Y}_{q}} \right) \mathrm{d}(t \times u) \\ &= \int_{G \times G} \alpha_{u^{-1}} \left(\left\langle \eta_{i}(u) \right| \left[\int_{G} \alpha_{s^{-1}} \left(\langle \zeta_{i}(s) | \zeta_{j} (st) \rangle_{\mathbf{Y}_{p}} \right) \mathrm{d}s \right] \beta_{t}^{q} \left(\eta_{j} \left(t^{-1} ur \right) \right) \right\rangle_{\mathbf{Y}_{q}} \right) \mathrm{d}(t \times u) \\ &= \int_{G \times G \times G} \alpha_{u^{-1}} \left(\left\langle \eta_{i}(u) \right| \alpha_{s^{-1}} \left(\langle \zeta_{i}(s) | \zeta_{j} (st) \rangle_{\mathbf{Y}_{p}} \right) \beta_{t}^{q} \left(\eta_{j} \left(t^{-1} ur \right) \right) \right\rangle_{\mathbf{Y}_{q}} \right) \mathrm{d}(s \times t \times u) \end{aligned}$$

and

$$\begin{split} &\langle \zeta_{i}\eta_{i}|\zeta_{j}\eta_{j}\rangle_{\mathsf{Y}_{pq}\rtimes\beta_{pq}G}(r) \\ &= \int_{G} \alpha_{u^{-1}} \Big(\langle (\zeta_{i}\eta_{i})(u)|(\zeta_{j}\eta_{j})(ur)\rangle_{\mathsf{Y}_{pq}} \Big) \, \mathrm{d}u \\ &= \int_{G} \alpha_{u^{-1}} \Bigg(\left\langle \int_{G} \zeta_{i}(s)\beta_{s}^{q} \left(\eta_{i}\left(s^{-1}u\right)\right) \, \mathrm{d}s \middle| \int_{G} \zeta_{j}(t)\beta_{t}^{q} \left(\eta_{j}\left(t^{-1}ur\right)\right) \, \mathrm{d}t \right\rangle_{\mathsf{Y}_{pq}} \Bigg) \, \mathrm{d}u \\ &= \int_{G\times G\times G} \alpha_{u^{-1}} \Big(\langle \zeta_{i}(s)\beta_{s}^{q} \left(\eta_{i}\left(s^{-1}u\right)\right) |\zeta_{j}(t)\beta_{t}^{q} \left(\eta_{j}\left(t^{-1}ur\right)\right)\rangle_{\mathsf{Y}_{pq}} \Big) \, \mathrm{d}(s \times t \times u) \\ &= \int_{G\times G\times G} \alpha_{u^{-1}} \Big(\langle \zeta_{i}(s) \otimes \beta_{s}^{q} \left(\eta_{i}\left(s^{-1}u\right)\right) |\zeta_{j}(t) \otimes \beta_{t}^{q} \left(\eta_{j}\left(t^{-1}ur\right)\right)\rangle_{\mathsf{Y}_{p}\otimes A}\mathsf{Y}_{q} \Big) \, \mathrm{d}(s \times t \times u) \\ &= \int_{G\times G\times G} \alpha_{u^{-1}} \Big(\left\langle \beta_{s}^{q} \left(\eta_{i}\left(s^{-1}u\right)\right) |\zeta_{i}(s)|\zeta_{j}(t)\rangle_{\mathsf{Y}_{p}} \beta_{t}^{q} \left(\eta_{j}\left(t^{-1}ur\right)\right) \right\rangle_{\mathsf{Y}_{q}} \Big) \, \mathrm{d}(s \times t \times u) \\ &= \int_{G\times G\times G} \alpha_{u^{-1}s} \Big(\left\langle \eta_{i}\left(s^{-1}u\right) \right| \alpha_{s^{-1}} \Big(\langle \zeta_{i}(s)|\zeta_{j}(st)\rangle_{\mathsf{Y}_{p}} \Big) \beta_{t}^{q} \left(\eta_{j}\left(t^{-1}s^{-1}ur\right)\right) \right\rangle_{\mathsf{Y}_{q}} \Big) \, \mathrm{d}(s \times t \times u) \\ &= \int \alpha_{u^{-1}s} \Big(\left\langle \eta_{i}\left(s^{-1}u\right) \right| \alpha_{s^{-1}} \Big(\langle \zeta_{i}(s)|\zeta_{j}(st)\rangle_{\mathsf{Y}_{p}} \Big) \beta_{t}^{q} \left(\eta_{j}\left(t^{-1}s^{-1}ur\right)\right) \right\rangle_{\mathsf{Y}_{q}} \Big) \, \mathrm{d}(s \times t \times u) \\ &= \int \alpha_{u^{-1}s} \Big(\langle \eta_{i}\left(s^{-1}u\right) \right| \alpha_{s^{-1}} \Big(\langle \zeta_{i}(s)|\zeta_{j}(st)\rangle_{\mathsf{Y}_{p}} \Big) \beta_{t}^{q} \Big(\eta_{j}\left(t^{-1}s^{-1}ur\right)\right) \right\rangle_{\mathsf{Y}_{q}} \Big) \, \mathrm{d}(s \times t \times u) \\ \end{aligned}$$

$$= \int_{G \times G \times G} \alpha_{u^{-1}s} \left(\left\langle \eta_i (s^{-1}u) \middle| \alpha_{s^{-1}} \left(\left\langle \zeta_i(s) \middle| \zeta_j(st) \right\rangle_{\mathbf{Y}_p} \right) \beta_t^q \left(\eta_j (t^{-1}s^{-1}ur) \right) \right\rangle_{\mathbf{Y}_q} \right) \, \mathrm{d}(s \times t \times g)$$
(By the change of variables $t \mapsto st$.)

$$= \int_{G \times G \times G} \alpha_{u^{-1}} \left(\left\langle \eta_i(u) \middle| \alpha_{s^{-1}} \left(\left\langle \zeta_i(s) \middle| \zeta_j(st) \right\rangle_{\mathbf{Y}_p} \right) \beta_t^q \left(\eta_j \left(t^{-1} ur \right) \right) \right\rangle_{\mathbf{Y}_q} \right) \, \mathbf{d}(s \times t \times u).$$
(By the change of variables $u \mapsto su$.)

Hence,

$$\forall r \in G: \qquad \Big\langle \eta_i \Big| \langle \zeta_i | \zeta_j \rangle_{\mathsf{Y}_p \rtimes_{\beta^p} G} \eta_j \Big\rangle_{\mathsf{Y}_q \rtimes_{\beta^q} G}(r) = \langle \zeta_i \eta_i | \zeta_j \eta_j \rangle_{\mathsf{Y}_{pq} \rtimes_{\beta^{pq}} G}(r)$$

V. DEACONU and L. HUANG

as claimed, so

$$\left\|\sum_{i=1}^{n} \zeta_{i} \otimes \eta_{i}\right\|_{\left(\mathsf{Y}_{p} \rtimes_{\beta^{p}} G\right) \otimes_{A \rtimes_{\alpha} G}\left(\mathsf{Y}_{q} \rtimes_{\beta^{q}} G\right)} = \left\|\Omega_{p,q}\left(\sum_{i=1}^{n} \zeta_{i} \otimes \eta_{i}\right)\right\|_{\mathsf{Y}_{pq} \rtimes_{\beta^{pq}} G}.$$

As $C_c(G, \mathbf{Y}_p) \otimes_{C_c(G,A)} C_c(G, \mathbf{Y}_q)$ is dense in $(\mathbf{Y}_p \rtimes_{\beta^p} G) \otimes_{A \rtimes_{\alpha} G} (\mathbf{Y}_q \rtimes_{\beta^q} G)$, we conclude that $\Omega_{p,q}$ extends uniquely to a \mathbb{C} -linear isometry

$$\overline{\Omega}_{p,q}: (\mathsf{Y}_p \rtimes_{\beta^p} G) \otimes_{A \rtimes_{\alpha} G} (\mathsf{Y}_q \rtimes_{\beta^q} G) \to \mathsf{Y}_{pq} \rtimes_{\beta^{pq}} G.$$

We wish to show that $\overline{\Omega}_{p,q}$ is $(A \rtimes_{\alpha} G)$ -linear for all $p, q \in P$, but this will turn out to be a consequence of the following two facts about these maps:

• For $p \in P$, $f \in A \rtimes_{\alpha} G$, and $\zeta \in \mathsf{Y}_p \rtimes_{\beta^p} G$,

$$f\zeta = \overline{\Omega}_{e,p}(f \otimes \zeta)$$
 and $\zeta f = \overline{\Omega}_{p,e}(\zeta \otimes f),$

which are true by both the definitions of $\overline{\Omega}_{e,p}$ and $\overline{\Omega}_{p,e}$. • For $p, q, r \in P, \zeta \in \mathsf{Y}_p \rtimes_{\beta^p} G, \eta \in \mathsf{Y}_q \rtimes_{\beta^q} G$, and $\xi \in Y_r \rtimes_{\beta^r} G$,

$$\overline{\Omega}_{pq,r}\big(\overline{\Omega}_{p,q}(\zeta\otimes\eta)\otimes\xi\big)=\overline{\Omega}_{p,qr}\big(\zeta\otimes\overline{\Omega}_{q,r}(\eta\otimes\xi)\big),$$

which holds because the multiplication law of the product system is associative. Now, to see the $(A \rtimes_{\alpha} G)$ -linearity of $\overline{\Omega}_{p,q}$ for all $p, q \in P$, simply observe for all $f \in A \rtimes_{\alpha} G$, $\zeta \in Y_p \rtimes_{\beta^p} G$, and $\eta \in Y_q \rtimes_{\beta^q} G$ that

$$\begin{split} \overline{\Omega}_{p,q}((\zeta \otimes \eta)f) &= \overline{\Omega}_{p,q}(\zeta \otimes \eta f) \\ &= \overline{\Omega}_{p,q}(\zeta \otimes \overline{\Omega}_{q,e}(\eta \otimes f)) \\ &= \overline{\Omega}_{pq,e}(\overline{\Omega}_{p,q}(\zeta \otimes \eta) \otimes f) \\ &= \overline{\Omega}_{p,q}(\zeta \otimes \eta)f. \end{split}$$

A similar computation gives $\overline{\Omega}_{p,q}(f(\zeta \otimes \eta)) = f\overline{\Omega}_{p,q}(\zeta \otimes \eta)$. By linearity and continuity, $\overline{\Omega}_{p,q}$ is therefore $(A \rtimes_{\alpha} G)$ -linear.

40

Finally, we will prove that $\overline{\Omega}_{p,q}$ is surjective for all $p,q \in P$ such that $p \neq e$. Firstly, note that for all $p \in P$ and $\zeta \in C_c(G, Y_p)$,

$$\begin{split} \|\zeta\|_{\mathbf{Y}_{p}\rtimes_{\beta^{p}}G} &= \left\| \langle \zeta|\zeta\rangle_{\mathbf{Y}_{p}\rtimes_{\beta^{p}}G} \right\|_{A\rtimes_{\alpha}G}^{\frac{1}{2}} \quad (\text{By Lemma 2.27 of } [\mathbf{17}].) \\ &\leq \left\| \langle \zeta|\zeta\rangle_{\mathbf{Y}_{p}\rtimes_{\beta^{p}}G} \right\|_{L^{1}(G,A)}^{\frac{1}{2}} \quad (\text{By Lemma 2.27 of } [\mathbf{17}].) \\ &= \left[\int_{G} \left\| \langle \zeta|\zeta\rangle_{\mathbf{Y}_{p}\rtimes_{\beta^{p}}G}(t) \right\|_{A} dt \right]^{\frac{1}{2}} \\ &= \left[\int_{G} \left\| \int_{G} \alpha_{s^{-1}} \left(\langle \zeta(s)|\zeta(st)\rangle_{\mathbf{Y}_{p}} \right) ds \right\|_{A} dt \right]^{\frac{1}{2}} \\ &\leq \left[\int_{G\times G} \left\| \alpha_{s^{-1}} \left(\langle \zeta(s)|\zeta(st)\rangle_{\mathbf{Y}_{p}} \right) \right\|_{A} d(s\times t) \right]^{\frac{1}{2}} \\ &= \left[\int_{G\times G} \left\| \langle \zeta(s)|\zeta(st)\rangle_{\mathbf{Y}_{p}} \right\|_{A} d(s\times t) \right]^{\frac{1}{2}} \\ &\leq \left[\int_{G\times G} \left\| \zeta(s)\|_{\mathbf{Y}_{p}} \left\| \zeta(st)\|_{\mathbf{Y}_{p}} d(s\times t) \right]^{\frac{1}{2}} \\ &\qquad (\text{By the Cauchy-Schwarz Inequality.)} \end{split}$$

$$= \left[\int_{G} \left(\|\zeta(s)\|_{\mathbf{Y}_{p}} \int_{G} \|\zeta(st)\|_{\mathbf{Y}_{p}} \, \mathrm{d}t \right) \, \mathrm{d}s \right]^{\frac{1}{2}}$$
$$= \left[\int_{G} \|\zeta(s)\|_{\mathbf{Y}_{p}} \|\zeta\|_{L^{1}(G,\mathbf{Y}_{p})} \, \mathrm{d}s \right]^{\frac{1}{2}}$$
$$= \left[\|\zeta\|_{L^{1}(G,\mathbf{Y}_{p})}^{2} \right]^{\frac{1}{2}}$$
$$= \|\zeta\|_{L^{1}(G,\mathbf{Y}_{p})}.$$

Fix $p, q \in P$ with $p \neq e$. By a routine partition-of-unity argument, we can approximate a function $\zeta \in C_c(G, \mathsf{Y}_{pq})$ with respect to $\|\cdot\|_{L^1(G, \mathsf{Y}_{pq})}$ — and hence with respect to $\|\cdot\|_{\mathsf{Y}_{pq} \rtimes_{\beta} pq G}$ — by a linear combination of functions of the form $f \odot z$, where $f \in C_c(G)$ and $z \in \mathsf{Y}_{pq}$. As $\overline{\mathsf{M}}_{p,q} : \mathsf{Y}_p \otimes_A \mathsf{Y}_q \to \mathsf{Y}_{pq}$ is an isomorphism, we can approximate z itself by a linear combination of elements of Y_{pq} of the form $\overline{\mathsf{M}}_{p,q}(x \otimes y)$, where $x \in \mathsf{Y}_p$ and $y \in \mathsf{Y}_q$. Now, for any $\epsilon > 0$, we can find an open neighborhood U of the identity $e_G \in G$ and a non-negative function $h \in C_c(G, \mathbb{R})$ with $\mathrm{Supp}(h) \subseteq U$ and integral 1 such that

$$\left\|f \odot \overline{\mathsf{M}}_{p,q}(x \otimes y) - \Omega_{p,q}((h \odot x) \otimes (f \odot y))\right\|_{L^1(G,\mathsf{Y}_{pq})} < \epsilon.$$

This yields, according to the foregoing discussion,

$$\left\|f \odot \overline{\mathsf{M}}_{p,q}(x \otimes y) - \Omega_{p,q}((h \odot x) \otimes (f \odot y))\right\|_{\mathsf{Y}_{pq} \rtimes_{\beta} pq} G} < \epsilon.$$

Therefore, $\operatorname{Range}(\overline{\Omega}_{p,q})$ is dense in $Y_{pq} \rtimes_{\beta^{pq}G}$, and as $\overline{\Omega}_{p,q}$ is an isometry between Banach spaces, it follows that $\overline{\Omega}_{p,q}$ is surjective.

As $\overline{\Omega}_{p,q}$ is a surjective $(A \rtimes_{\alpha} G)$ -linear isometry for all $p, q \in P$ with $p \neq e$, we can apply the main result of [13] by Lance to conclude that it is a unitary operator. If Y is essential, then $\overline{\mathsf{M}}_{e,q}$ is an isomorphism, so $\overline{\Omega}_{e,q}$ is also an isomorphism and $\mathsf{Y} \rtimes_{\beta} G$ is essential.

 \square

Theorem 3.5. Suppose that a group G acts on a row-finite and faithful P-indexed product system Y over A via automorphisms β_g^p . Then G acts on $\mathcal{O}(Y)$ via automorphisms denoted by γ_g . Moreover, if G is amenable, then $\mathsf{Y} \rtimes_\beta G$ is row-finite and faithful, and for $P = \mathbb{N}^k$ and Y essential, we even have

$$\mathcal{O}(\mathsf{Y})\rtimes_{\gamma}G\cong\mathcal{O}(\mathsf{Y}\rtimes_{\beta}G).$$

Proof. Let $p \in P$. Recall that there is a strongly continuous action τ^p of G on $\mathcal{K}(\mathsf{Y}_p)$ given by

$$\forall x, y \in \mathsf{Y}_p: \qquad \tau_g^p(\Theta_{x,y}) = \Theta_{\beta_g^p(x),\beta_g^p(y)}.$$

The left-action $\phi_p : A \to \mathcal{K}(\mathsf{Y}_p)$ is injective by assumption. To see that it is equivariant for α and τ^p , first observe that for all $g \in G$, $a \in A$, and $x \in Y_p$

$$\beta_g^p([\phi_p(a)](x)) = \beta_g^p(ax) = \alpha_g(a)\beta_g^p(x) = [\phi_p(\alpha_g(a))](\beta_g^p(x)),$$

so $\beta_g^p \circ \phi_p(a) = \phi_p(\alpha_g(a)) \circ \beta_g^p$; equivalently, $\beta_g^p \circ \phi_p(a) \circ \beta_{g^{-1}}^p = \phi_p(\alpha_g(a))$. Next, observe for all $g \in G$ and $x, y, z \in Y_p$ that

$$\begin{pmatrix} \beta_g^p \circ \Theta_{x,y} \circ \beta_{g^{-1}}^p \end{pmatrix}(z) = \beta_g^p \left(x \left\langle y \middle| \beta_{g^{-1}}^p(z) \right\rangle_{\mathsf{Y}_p} \right)$$

$$= \beta_g^p(x) \alpha_g \left(\left\langle y \middle| \beta_{g^{-1}}^p(z) \right\rangle_{\mathsf{Y}_p} \right)$$

$$= \beta_g^p(x) \left\langle \beta_g^p(y) \middle| z \right\rangle_{\mathsf{Y}_p}$$

$$= \Theta_{\beta_g^p(x), \beta_g^p(y)}(z),$$

so $\tau_g^p(\Theta_{x,y}) = \beta_g^p \circ \Theta_{x,y} \circ \beta_{q^{-1}}^p$. In particular, as $\operatorname{Range}(\phi_p) \subseteq \mathcal{K}(\mathsf{Y}_p)$, we have

$$\forall a \in A: \qquad \tau_g^p(\phi_p(a)) = \beta_g^p \circ \phi_p(a) \circ \beta_{g^{-1}}^p = \phi_p(\alpha_g(a)),$$

which proves the equivariance of ϕ_p for α and τ^p . According to the theory of reduced C^* -crossed products, ϕ_p induces the injective *-homomorphism

$$\overline{\phi_p}: A \rtimes_{\alpha, \mathrm{red}} G \to \mathcal{K}(\mathsf{Y}_p) \rtimes_{\tau^p, \mathrm{red}} G,$$

where $\overline{\phi_p}(f) = \phi_p \circ f$ for all $f \in C_c(G, A)$. However, G is amenable, so $\overline{\phi_p}$: $A \rtimes_{\alpha} G \to \mathcal{K}(\mathsf{Y}_p) \rtimes_{\tau^p} G \text{ and } \mathcal{K}(\mathsf{Y}_p) \rtimes_{\tau^p} G \xrightarrow{\cong} \mathcal{K}(\mathsf{Y}_p \rtimes_{\beta^p} G), \text{ where the inverse } \Lambda$ of this *-isomorphism is defined in [9] by

$$\forall \zeta, \eta \in C_c(G, \mathsf{Y}_p), \ \forall s \in G: \qquad [\Lambda(\Theta_{\zeta, \eta})](s) = \int_G \Delta(s^{-1}r) \Theta_{\zeta(r), \beta_s^p(\eta(s^{-1}r))} \ \mathrm{d}r,$$

where Δ is the modular function of G. Therefore, $\mathsf{Y} \rtimes_{\beta} G$ is also a row-finite and faithful product system, as claimed.

Next, we show that there exists a strongly continuous action γ of G on $\mathcal{O}(\mathsf{Y})$ that satisfies

$$\forall g \in G, \ \forall p \in P, \ \forall y \in \mathsf{Y}_p: \qquad \gamma_g(j_{\mathsf{Y}}(y)) = j_{\mathsf{Y}}\big(\beta_g^p(y)\big), \tag{1}$$

42

where $j_{\mathsf{Y}} : \mathsf{Y} \to \mathcal{O}(\mathsf{Y})$ denotes the universal Cuntz–Pimsner representation. Let $g \in G$. Then the map $\Psi_g : \mathsf{Y} \to \mathcal{O}(\mathsf{Y})$ defined by $\Psi_g(y) \stackrel{\text{df}}{=} j_{\mathsf{Y}}(\beta_g^p(y))$ for all $p \in P$ and $y \in \mathsf{Y}_p$ is a Cuntz-Pimsner representation of Y on $\mathcal{O}(\mathsf{Y})$:

• For all $p, q \in P$, $x \in Y_p$, and $y \in Y_q$, we have

$$\begin{split} \Psi_g(xy) &= j_{\mathsf{Y}} \left(\beta_g^{pq}(xy) \right) \\ &= j_{\mathsf{Y}} \left(\beta_g^p(x) \beta_g^q(y) \right) \\ &= j_{\mathsf{Y}} \left(\beta_g^p(x) \right) j_{\mathsf{Y}} \left(\beta_g^q(y) \right) \\ &= \Psi_g(x) \Psi_g(y). \end{split}$$

• For all $p \in P$ and $x, y \in Y_p$, we have

$$\begin{split} \Psi_g\Big(\langle x|y\rangle_{\mathbf{Y}_p}\Big) &= j_{\mathbf{Y}}\Big(\alpha_g\Big(\langle x|y\rangle_{\mathbf{Y}_p}\Big)\Big)\\ &= j_{\mathbf{Y}}\Big(\langle\beta_g^p(x)\big|\beta_g^p(y)\rangle_{\mathbf{Y}_p}\Big)\\ &= j_{\mathbf{Y}}\Big(\beta_g^p(x)\Big)^* j_{\mathbf{Y}}\Big(\beta_g^p(y)\Big)\\ &= \Psi_g(x)^*\Psi_g(y). \end{split}$$

• Let $p \in P$. The foregoing argument tells us that Ψ_g is a Toeplitz representation of Y on $\mathcal{O}(Y)$, so there exists an extension $\Psi_g^{(p)} : \mathcal{K}(Y_p) \to \mathcal{O}(Y)$ such that

$$\forall x, y \in \mathsf{Y}_P : \qquad \Psi_g^{(p)}(\Theta_{x,y}) = \Psi_g(x)\Psi_g(y)^* \\ = j_{\mathsf{Y}} \left(\beta_g^p(x)\right) j_{\mathsf{Y}} \left(\beta_g^p(y)\right)^* \\ = j_{\mathsf{Y}}^{(p)} \left(\Theta_{\beta_g^p(x),\beta_g^p(y)}\right) \\ = j_{\mathsf{Y}}^{(p)} \left(\tau_g^p(\Theta_{x,y})\right),$$

which implies by linearity and continuity that $\Psi_g^{(p)} = j_{\mathsf{Y}}^{(p)} \circ \tau_g^p$. As we have shown that ϕ_p is equivariant for α and τ^p and since j_{Y} is Cuntz–Pimsner-covariant, we have

$$\forall a \in A: \qquad \Psi_g^{(p)}(\phi_p(a)) = j_{\mathsf{Y}}^{(p)}(\tau_g^p(\phi_p(a))) = j_{\mathsf{Y}}^{(p)}(\phi_p(\alpha_g(a))) = j_{\mathsf{Y}}(\alpha_g(a)) = \Psi_g(a),$$

proving that Ψ_g is a Cuntz–Pimsner representation of Y. By universality, there is thus a C^* -endomorphism S on $\mathcal{O}(\mathsf{Y})$ such that

$$\forall p \in P, \ \forall y \in \mathsf{Y}_p: \qquad S(j_{\mathsf{Y}}(y)) = j_{\mathsf{Y}}\big(\beta_q^p(y)\big).$$

Similarly, there is a C^* -endomorphism T on $\mathcal{O}(\mathsf{Y})$ such that

$$\forall p \in P, \ \forall y \in \mathsf{Y}_p: \qquad T(j_{\mathsf{Y}}(y)) = j_{\mathsf{Y}} \Big(\beta_{g^{-1}}^p(y) \Big).$$

As $ST = \mathrm{Id}_{\mathcal{O}(\mathsf{Y})} = TS$, we see that S is a C*-isomorphism, and as g is arbitrary and β is an action of G on Y, there is an action γ of G on $\mathcal{O}(\mathsf{Y})$ that satisfies (1). The strong continuity of γ immediately follows from the continuity of j_{Y} and the strong continuity of each β^p .

We now show that a Cuntz–Pimsner representation $\psi : Y \rtimes_{\beta} G \to \mathcal{O}(Y) \rtimes_{\gamma} G$ exists and that it satisfies

$$\forall p \in P, \ \forall \zeta \in C_c(G, \mathsf{Y}_p) : \qquad \psi_p(\zeta) = j_{\mathsf{Y}} \circ \zeta.$$

As $j_{\mathbf{Y}}|_A : A \to \mathcal{O}(\mathbf{Y})$ is a *-homomorphism, and as $\gamma_g(j_{\mathbf{Y}}(a)) = j_{\mathbf{Y}}(\alpha_g(a))$ for all $a \in A$, we find that $j_{\mathbf{Y}}|_A$ is equivariant for α and γ . Hence, $j_{\mathbf{Y}}|_A$ induces a *-homomorphism

$$\psi_e: A \rtimes_\alpha G \to \mathcal{O}(\mathsf{Y}) \rtimes_\gamma G$$

such that $\psi_e(f) = j_{\mathsf{Y}} \circ f$ for all $f \in C_c(G, A)$. Let $p \in P$ and $\zeta, \eta \in C_c(G, \mathsf{Y}_p)$. Then for all $s \in G$,

$$\begin{split} \left[(j_{\mathbf{Y}} \circ \zeta)^* (j_{\mathbf{Y}} \circ \zeta) \right] (s) &= \int_G (j_{\mathbf{Y}} \circ \zeta)^* (r) \gamma_r \left((j_{\mathbf{Y}} \circ \zeta) (r^{-1} s) \right) \, \mathrm{d}r \\ &= \int_G \Delta (r^{-1}) \cdot \gamma_r \left(j_{\mathbf{Y}} \left(\zeta (r^{-1}) \right)^* \right) \gamma_r (j_{\mathbf{Y}} \left(\zeta (r^{-1} s) \right)) \, \mathrm{d}r \\ &= \int_G \gamma_{r^{-1}} (j_{\mathbf{Y}} (\zeta (r))^*) \gamma_{r^{-1}} (j_{\mathbf{Y}} (\zeta (rs))) \, \mathrm{d}r \\ &= \int_G \gamma_{r^{-1}} \left(j_{\mathbf{Y}} \left(\zeta (r) \right)^* j_{\mathbf{Y}} (\zeta (rs)) \right) \, \mathrm{d}r \\ &= \int_G j_{\mathbf{Y}} (\alpha_{r^{-1}} \left(\langle \zeta (r) | \zeta (rs) \rangle_{\mathbf{Y}_p} \right) \right) \, \mathrm{d}r \\ &= j_{\mathbf{Y}} \left(\int_G \alpha_{r^{-1}} \left(\langle \zeta (r) | \zeta (rs) \rangle_{\mathbf{Y}_p} \right) \, \mathrm{d}r \right) \quad (\text{By the continuity of } j_{\mathbf{Y}}.) \\ &= j_{\mathbf{Y}} \left(\left\langle \zeta | \zeta \rangle_{\mathbf{Y}_p \rtimes_{\beta^p} G} (s) \right) \\ &= \left[\psi \left(\langle \zeta | \zeta \rangle_{\mathbf{Y}_p \rtimes_{\beta^p} G} \right) \right] (s), \end{split}$$

 \mathbf{SO}

$$\begin{split} \|j_{\mathbf{Y}} \circ \zeta\|_{\mathcal{O}(\mathbf{Y}) \rtimes_{\gamma} G} &= \left\| (j_{\mathbf{Y}} \circ \zeta)^{*} (j_{\mathbf{Y}} \circ \zeta) \right\|_{\mathcal{O}(\mathbf{Y}) \rtimes_{\gamma} G}^{\frac{1}{2}} \\ &= \left\| \psi \left(\langle \zeta | \zeta \rangle_{\mathbf{Y}_{p} \rtimes_{\beta} p G} \right) \right\|_{\mathcal{O}(\mathbf{Y}) \rtimes_{\gamma} G}^{\frac{1}{2}} \\ &\leq \left\| \langle \zeta | \zeta \rangle_{\mathbf{Y}_{p} \rtimes_{\beta} p G} \right\|_{A \rtimes_{\alpha} G}^{\frac{1}{2}} \\ &= \| \zeta \|_{\mathbf{Y}_{p} \rtimes_{\beta} p G}. \end{split}$$

In light of this norm-inequality, there exists a continuous linear map

$$\psi_p: \mathsf{Y}_p \rtimes_{\beta^p} G \to \mathcal{O}(\mathsf{Y}) \rtimes_{\gamma} G$$

such that $\psi_p(\zeta) = j_{\mathbf{Y}} \circ \zeta$ for all $\zeta \in C_c(G, \mathbf{Y}_p)$. By combining the various ψ_p 's, we get a map $\psi : \mathbf{Y} \rtimes_{\beta} G \to \mathcal{O}(\mathbf{Y}) \rtimes_{\gamma} G$. The following show that ψ is a Toeplitz representation:

• As seen above, $\psi_e(\langle \zeta | \zeta \rangle_{\mathsf{Y}_p \rtimes_{\beta^p} G}) = \psi_p(\zeta)^* \psi_p(\zeta)$ for all $p \in P$ and $\zeta \in C_c(G, \mathsf{Y}_p)$.

For all
$$p, q \in P$$
, $\zeta \in \mathbf{Y}_p \rtimes_{\beta^p} G$, $\eta \in \mathbf{Y}_q \rtimes_{\beta^q} G$, and $s \in G$,

$$\begin{bmatrix} \psi_p(\zeta)\psi_q(\eta) \end{bmatrix} (s) = \int_G [\psi_p(\zeta)](r)\gamma_r([\psi_q(\eta)](r^{-1}s)) \, \mathrm{d}r$$

$$= \int_G j_\mathbf{Y}(\zeta(r))\gamma_r(j_\mathbf{Y}(\eta(r^{-1}s))) \, \mathrm{d}r$$

$$= \int_G j_\mathbf{Y}(\zeta(r))j_\mathbf{Y}(\beta_r^q(\eta(r^{-1}s))) \, \mathrm{d}r$$

$$= j_\mathbf{Y}\left(\int_G \zeta(r)\beta_r^q(\eta(r^{-1}s)) \, \mathrm{d}r\right)$$

$$= j_\mathbf{Y}((\zeta\eta)(s))$$

$$= [\psi_{pq}(\zeta\eta)](s),$$

so $\psi_p(\zeta)\psi_q(\eta) = \psi_{pq}(\zeta\eta).$

It thus remains to check Cuntz–Pimsner covariance. If

$$\psi^{(p)}: \mathcal{K}(\mathsf{Y}_p \rtimes_{\beta^p} G) \to \mathcal{O}(\mathsf{Y}) \rtimes_{\gamma} G$$

denotes the extension of ψ_p , then letting $p \in P$, $\zeta, \eta \in C_c(G, Y_p)$, and $s \in G$, we obtain that

$$\begin{split} \left[\psi^{(p)}(\Theta_{\zeta,\eta}) \right](s) &= \left[\psi_p(\zeta) \psi_p(\eta)^* \right](s) \\ &= \int_G \left[\psi_p(\zeta) \right](r) \gamma_r \left(\left[\psi_p(\eta)^* \right] \left(r^{-1}s \right) \right) \, \mathrm{d}r \\ &= \int_G j_Y(\zeta(r)) \gamma_r \left(\Delta \left(s^{-1}r \right) \cdot \gamma_{r^{-1}s} \left(j_Y \left(\eta \left(s^{-1}r \right) \right)^* \right) \right) \, \mathrm{d}r \\ &= \int_G \Delta \left(s^{-1}r \right) \cdot j_Y(\zeta(r)) \gamma_s \left(j_Y \left(\eta \left(s^{-1}r \right) \right)^* \right) \, \mathrm{d}r \\ &= \int_G \Delta \left(s^{-1}r \right) \cdot j_Y(\zeta(r)) j_Y \left(\beta_s^p \left(\eta \left(s^{-1}r \right) \right) \right)^* \, \mathrm{d}r \\ &= \int_G \Delta \left(s^{-1}r \right) \cdot j_Y^{(p)} \left(\Theta_{\zeta(r),\beta_s^p(\eta(s^{-1}r))} \right) \, \mathrm{d}r \\ &= j_Y^{(p)} \left(\int_G \Delta \left(s^{-1}r \right) \cdot \Theta_{\zeta(r),\beta_s^p(\eta(s^{-1}r))} \, \mathrm{d}r \right) \\ &= \left[j_Y^{(p)} \circ \Lambda(\Theta_{\zeta,\eta}) \right](s). \end{split}$$

Hence, $\psi^{(p)}(\Theta_{\zeta,\eta}) = j_{\mathsf{Y}}^{(p)} \circ \Lambda(\Theta_{\zeta,\eta})$, which means that $\psi^{(p)}(T) = j_{\mathsf{Y}}^{(p)} \circ \Lambda(T)$ for all $T \in \mathcal{K}(\mathsf{Y} \rtimes_{\beta^p} G)$. In particular, we have for all $f \in C_c(G, A)$ that

$$\psi^{(p)} \left(\Lambda^{-1} \left(\overline{\phi_p}(f) \right) \right) = j_{\mathsf{Y}}^{(p)} \circ \Lambda \left(\Lambda^{-1}(\phi_p \circ f) \right)$$
$$= j_{\mathsf{Y}}^{(p)} \circ \phi_p \circ f$$
$$= j_{\mathsf{Y}} \circ f$$
$$= \psi_e(f).$$

Therefore, $\psi^{(p)} \circ (\Lambda^{-1} \circ \overline{\phi_p}) = \psi_e$ for all $p \in P$, which proves that ψ is Cuntz–Pimsner covariant. By universality, the representation $\psi : \mathsf{Y} \rtimes_\beta G \to \mathcal{O}(\mathsf{Y}) \rtimes_\gamma G$

determines a unique *-homomorphism

$$\psi_*: \mathcal{O}(\mathsf{Y} \rtimes_\beta G) \to \mathcal{O}(\mathsf{Y}) \rtimes_\gamma G$$

such that $\psi_*(j_{\mathsf{Y}\rtimes_\beta G}(f)) = \psi_p(f)$ for $f \in C_c(G, \mathsf{Y}_p)$. The image of ψ_* generates $\mathcal{O}(\mathsf{Y}) \rtimes_\gamma G$, so ψ_* is surjective.

For $P = \mathbb{N}^k$ and Y essential, recall that there is a gauge action σ of \mathbb{T}^k on $\mathcal{O}(Y)$ such that $\sigma_z(a) = a$ and $\sigma_z(j_Y(\zeta)) = z^p j_Y(\zeta)$. As the action γ of G on $\mathcal{O}(Y)$ is equivariant, we get a gauge action of \mathbb{T}^k on $\mathcal{O}(Y) \rtimes_{\gamma} G$. The injectivity of ψ_* now follows from the injectivity of ψ_e (note that j_Y is injective); see Lemma 3.3.2 in [5] or Corollary 4.14 in [3].

Remark 3.6. Katsoulis obtained similar results for the so-called generalized gauge action on a product system over a semigroup P that is the positive cone of an abelian group, see Theorem 3.8 in [10]. Moreover, using a Fourier transform, he proved a Takai-duality result and generalized some results of Schafhauser from [15].

Remark 3.7. Suppose Y is a row-finite, faithful, and essential product system indexed by $P = \mathbb{N}^k$. If A is AF and each C^{*}-correspondence Y_n is full and separable, then there is a gauge action σ of \mathbb{T}^k on $\mathcal{O}(Y)$ and $\mathcal{O}(Y) \rtimes_{\sigma} \mathbb{T}^k$ is AF.

Proof. Like in Example 3.2, there is a gauge action of \mathbb{T}^k on $\mathcal{O}(\mathsf{Y})$. In this case, $\mathcal{O}(\mathsf{Y}) \rtimes_{\sigma} \mathbb{T}^k$ is Morita–Rieffel equivalent to the core $\mathcal{O}(Y)^{\sigma} \cong \varinjlim_{n \in \mathbb{N}^k} \mathcal{K}(\mathsf{Y}_n)$, and each $\mathcal{K}(\mathsf{Y}_n)$ is Morita–Rieffel equivalent to A as Y_n is full. It follows that $\mathcal{O}(\mathsf{Y}) \rtimes_{\sigma} \mathbb{T}^k$ is AF.

Example 3.8. In the setting of Example 3.3, the compact group G acts on each fiber Y_n of the product system Y via the representation $\rho^n = \rho_1^{\otimes n_1} \otimes \cdots \otimes \rho_k^{\otimes n_k}$. This action is compatible with the multiplication maps and commutes with the gauge action of \mathbb{T}^k . The crossed product $Y \rtimes G$ is a row-finite and faithful product system indexed by \mathbb{N}^k over the group C^* -algebra $C^*(G)$. Moreover,

$$\mathcal{O}(\mathsf{Y}) \rtimes G \cong \mathcal{O}(\mathsf{Y} \rtimes G).$$

The Doplicher–Roberts algebra $\mathcal{O}_{\rho_1,\ldots,\rho_k}$ constructed in [4] from intertwiners $\operatorname{Hom}(\rho^n,\rho^m)$ is isomorphic to the fixed point algebra $\mathcal{O}(\mathsf{Y})^G$ and is Morita–Rieffel equivalent to $\mathcal{O}(\mathsf{Y}) \rtimes G$.

Example 3.9. If a locally compact group G acts on a k-graph Λ by automorphisms, then G acts on the product system Y constructed from Λ as in Example 2.3 and the C^* -algebra of the product system $\mathsf{Y} \rtimes G$ is isomorphic to $C^*(\Lambda) \rtimes G$. In [8], the authors consider the particular case when $G = \mathbb{Z}^{\ell}$ and they construct a $(k + \ell)$ -graph $\Lambda \times \mathbb{Z}^{\ell}$ such that $C^*(\Lambda \times \mathbb{Z}^{\ell}) \cong C^*(\Lambda) \rtimes \mathbb{Z}^{\ell}$. Our result gives a new perspective on this situation.

References

- S. Albandik and R. Meyer, Product systems over Ore monoids, Doc. Math. 20 (2015), 1331–1402.
- B. Burgstaller, Some multidimensional Cuntz algebras, Aequationes Math. 76 (2008), 19–32. Doi: 10.1007/s00010-007-2924-4

- [3] T. M. Carlsen, N. S. Larsen, A. Sims and S. T. Vittadello, Co-universal algebras associated to product systems, and gauge-invariant uniqueness theorems, Proc. Lond. Math. Soc. (3) 103 (2011), 563–600. Doi: 10.1112/plms/pdq028
- [4] V. Deaconu, C*-algebras from k group representations, J Aust. Math. Soc. 113 (2022), 318–338. Doi: 10.1017/S1446788721000392
- [5] V. Deaconu, A. Kumjian, D. Pask and A. Sims, Graphs of C^{*}-correspondences and Fell bundles, Indiana Univ. Math. J. 59 (2010), 1687–1735. Doi: 10.1512/iumj.2010.59.3893
- [6] N. J. Fowler, Discrete product systems of finite-dimensional Hilbert spaces, and generalized Cuntz algebras, preprint 1999, arXiv:math/9904116 [math.OA]
- [7] N. J. Fowler, Discrete product systems of Hilbert bimodules, Pac. J. Math. 204 (2002), 335–375. Doi: 10.2140/pjm.2002.204.335
- [8] C. Farthing, D. Pask, and A. Sims, Crossed products of k-graph C^{*}-algebras by Z^l, Houston J. Math. 35 (2009), 903–933.
- [9] G. Hao and C.-K. Ng, Crossed products of C^{*}-correspondences by amenable group actions, J. Math. Anal. Appl. 345 (2008), 702–707. Doi: 10.1016/j.jmaa.2008.04.058
- [10] E. Katsoulis, Product systems of C*-correspondences and Takai duality, Isr. J. Math. 240 (2020), 223–251. Doi: 10.1007/s11856-020-2063-3
- [11] T. Katsura, On C^{*}-algebras associated with C^{*}-correspondences, J. Funct. Anal. **217** (2004), 366–401. Doi: 10.1016/j.jfa.2004.03.010
- [12] A. Kumjian and D. Pask, Actions of \mathbb{Z}^k associated to higher rank graphs, Ergodic Theory Dyn. Syst. **23** (2003), 1153–1172. Doi: 10.1017/S0143385702001670
- [13] E. C. Lance, Unitary operators on Hilbert C*-modules, Bull. Lond. Math. Soc., 26 (1994), 363–366. Doi: 10.1112/blms/26.4.363
- [14] M. V. Pimsner, A Class of C*-Algebras Generalizing Both Cuntz-Krieger Algebras and Crossed Products by Z, Free probability theory (Waterloo, ON, 1995), Fields Institute Communications 12, 189–212, American Mathematical Society, Providence, RI, 1997.
- C. P. Schafhauser, Cuntz-Pimsner algebras, crossed products, and K-theory, J. Funct. Anal. 269 (2015), 2927–2946. Doi: 10.1016/j.jfa.2015.08.008
- [16] A. Sims and T. Yeend, C*-algebras associated to product systems of Hilbert bimodules, J. Oper. Theory 64 (2010), 349–376.
- [17] D. P. Williams, Crossed products of C*-algebras, Mathematical Surveys and Monographs 134, American Mathematical Society, Providence, RI, 2007.

Valentin Deaconu	Leonard Huang
Department of Mathematics	Department of Mathematics
and Statistics	and Statistics
University of Nevada, Reno	University of Nevada, Reno
Reno, NV 89557-0084	Reno, NV 89557-0084
USA	USA
vdeaconu@unr.edu	LeonardHuang@unr.edu