
NEW ZEALAND JOURNAL OF MATHEMATICS
Volume 48 (2018), 31-39

RANKS ON THE BOUNDARIES OF SECANT VARIETIES

Edoardo Ballico
(Received 27 March, 2018)

Abstract. In many cases (e.g. for many Segre or Segre-Veronese embeddings

of multiprojective spaces) we prove (in characteristic 0) that a hypersurface of

the b-secant variety of X ⊂ Pr has X-rank > b. We prove it proving that the
X-rank of a general point of the join of b − 2 copies of X and the tangential

variety of X is > b.

1. Introduction

Let X ⊂ Pr be an integral and non-degenerate variety defined over an alge-
braically closed field. For any q ∈ X the X-rank rX(q) of X is the minimal
cardinality of a set S ⊂ X such that q ∈ 〈S〉, where 〈 〉 denote the linear span.
For any q ∈ Pr let S(X, q) denote the set of all finite subsets S ⊂ X such that
q ∈ 〈S〉 and ](S) = rX(q). For any integer s > 0 let σs(X) ⊆ Pr be the s-secant
variety of X, i.e. the closure of the union of all linear space 〈S〉 with S ⊂ X and
](S) = s. See [17] for many applications of X-ranks (e.g. the tensor rank) and
secant varieties (a.k.a. the border rank). The algebraic set σs(X) is an integral
variety of dimension ≤ s(1 + dimX) − 1 and σs(X) is said to be non-defective
if it has dimension min{r, s(1 + dimX) − 1}. Every secant variety of a curve is
non-defective ([3, Corollary 4]). Let τ(X) ⊆ Pr be the tangential variety of X, i.e.
the closure in Pr of the union of all tangent spaces TpX, p ∈ Xreg. The algebraic
set τ(X) is an integral variety of dimension ≤ 2(dimX) and τ(X) ⊆ σ2(X). For
any integer b ≥ 2 let τ(X, b) denote the join of one copy of τ(X) and b − 2 copies
of X. If X is a curve, then dim τ(X, b) = min{r, s(1 + dimX) − 2} (use b − 2
times [3, part 2) of Proposition 1.3] and that dim τ(X) = 2) and hence τ(X, b) is a
non-empty codimension 1 subset of σb(X) if X is a curve and r > 2b. For a variety
X of arbitrary dimensional usually τ(X, b) is a hypersurface of σb(X), but this is
not always true. For instance, if σ2(X) has not the expected dimension one expects
that τ(X, b) = σb(X) and this is the case if X is smooth ([14, Corollary 4]). A
general q ∈ τ(X) has rX(q) = 2 (and hence for any b ≥ 2 a general o ∈ τ(X, b)
has X-rank ≤ b) if a general tangent line to Xreg meets X at another point of X,
i.e. if X is tangentially degenerate in the sense of [15]. It is easy to check that
X is tangentially degenerate if and only if the curve X ∩M ⊂ M is tangentially
degenerate, where M is a general codimension n− 1 linear subspace of X. H. Kaji
proved that in characteristic zero a smooth curve in Pm, t ≥ 3, is not tangentially
degenerate ([15, Theorem 3.1]) and this is true also if the normalization map of

2010 Mathematics Subject Classification 14N05; 15A69.
Key words and phrases: secant variety, X-rank, tangential variety, join of two varieties, Segre
variety, tensor rank.

The author was partially supported by MIUR and GNSAGA of INdAM (Italy).



32 E. BALLICO

X ∩M is unramified ([15, Remark 3.8]) or if X ∩M has only toric singularities
([11]). See [16] for the state of the art (at that time) on tangentially degenerate
curves and a list to the examples known in positive characteristic.

In [7] we raised the following question and gave a positive answer (in character-
istic zero) when X is a curve.

Question 1.1. Assume b ≥ 2, r ≥ b(1 + dimX) − 2, and that σs(X) has the
expected dimension. Is rX(q) > b for a non-empty subset of σb(X) of codimension
1 in σb(X)? Is rX(q) > b for a general point of τ(X, b)?

Our aim is to refine this question for n := dimX > 1 and get (in some cases) a
positive answer. Take a general q ∈ τ(X, b). There is o ∈ Xreg, a degree 2 connected
zero-dimensional scheme v with vred = {o} and p1, . . . , pb−2 ∈ X such that pi 6= pj
for all i 6= j, pi 6= o for all i and q ∈ 〈v ∪ {p1, . . . , pb−2}〉. For a general q ∈ τ(x, b)
the set (o, p1, . . . , pb−2) is general in Xb−1 and v is a general tangent vector to X
at o. Let Z(X, b) be the set of all degree b schemes v ∪ {p1, . . . , pb−2} with pi 6= pj
for all i 6= j and o := vred ∈ Xreg \ {p1, . . . , pb−2}. Let τ(X, b)′ be the union of all
q ∈ τ(X, b) such that there is Z ∈ Z(X, b) with q ∈ 〈Z〉. For any q ∈ τ(X, b)′ let
Z(X, b, q) be the set of all Z ∈ Z(X, b) such that q ∈ 〈Z〉.

(i) Is dim τ(X, b) = b(n+ 1)− 2 = dimσb(X)− 1?
(ii) Is ](Z(X, b, q)) = 1 for a general q ∈ τ(X, b)′?
(iii) Is rX(q) > b for a general q ∈ τ(X, b)?

If (i) and (iii) are true, then the set of all q ∈ σb(X) with rX(q) > b has dimension
b(n + 1) − 2 (i.e. if the base field is the complex number field C it has Hausdorff
dimension 2b(n + 1) − 4). To get a positive answer the first part of Question 1.1
for X and b it is not necessary to prove that (i) and (iii) hold and probably (ii)
never will be used to prove (i) and (iii), but (ii) is a nice question, similar to ask if
](S(X, o)) = 1 for a general o ∈ σb(X) (this is called the identifiability of σb(X)).
The way we prove (iii) in the next theorem we get with a very similar proof also
(ii), while (i) comes for free.

We prove the following result (in characteristic zero).

Theorem 1.2. Take b ≥ 2. Let X ⊂ Pr, be a an integral and non-degenerate
variety, which is non-singular in codimension 1. Set n := dimX. Assume OX(1) =
L ⊗ R and the existence of base point free linear spaces V ⊆ H0(L), W ⊆ H0(R)
such that v := dimV ≥ n + b + 2, w := dimW ≥ n + b + 2, the morphisms
uV : X → Pv−1 and uW : X → Pw−1, are birational onto their images, that the
closures of their images XV and XW have singular locus of dimension ≤ n−1, and
that dimσ2(XV ) = 2n + 1. Assume that the image of the multiplication map V ⊗
W → H0(OX(1)) is contained in the image of the restriction map H0(OPr (1)) →
H0(OX(1)) and it induces an embedding. Then dim τ(X, b) = b(n + 1) − 2 =
dimσb(X)− 1 and a general q ∈ τ(X, b) has rX(q) > b and ](Z(X, b, q)) = 1.

If uv and uW are embeddings the assumptions on the singularities of XV and
XW are satisfied if and only if X is non-singular in codimension 1.

We apply Theorem 1.2 to the case of certain Segre-Veronese embeddings of mul-
tiprojective spaces (see Example 2.6), but since we assumed that both L and R are
birationally very ample, we cannot use Theorem 1.2 for the most important case:
tensors, i.e. the Segre embedding of a multiprojective space. For tensors we prove
the following result.
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Theorem 1.3. Let X ⊂ Pr, r + 1 =
∏s

i=1(ni + 1), be the Segre embedding of the
multiprojective space Pn1×· · ·×Pns . Fix an integer b ≥ 2 and assume the existence
of a decomposition E t F = {1, . . . , s} such that

∏
i∈E(ni + 1) > b + 3 +

∑
i∈E ni

and
∏

i∈E(ni +1) > b+3+
∑

i∈F ni. Then dimσb(X) = b(n+1)−1, dim τ(X, b) =
b(n+ 1)− 2 and rX(q) > b for a general q ∈ τ(X, b).

The assumptions of Theorem 1.3 imply ](E) ≥ 2 and ](F ) ≥ 2 and hence they
exclude the case s = 2, 3. The exclusion of the case s = 2 is not a fault of our
too restrictive assumptions. If s = 2 every q ∈ τ(X) \ X has X-rank 2 ([8], [12,
Proposition 1.1]) and hence a general q ∈ τ(X, b) has rank at most b. The paper
[10] contains 3 results related to Theorem 1.3 ([10, Theorems 3.1, 4.6 and 4.10]),
but none of them covers Theorem 1.3.

For a better description of the X-ranks of σ3(X) for s = 3 see [12]. In this case
τ(X) is not contained in the singular locus of σ2(X) ([12, Theorem 1.3]. We expect
that the same holds for τ(X, b) for certain very positively embedded X. For the
case b = 2, see [19].

We work over an algebraically closed field K with characteristic zero.

2. Proof of Theorem 1.2

For any integer b > 0 let A(X, b) denote the set of all subsets of X with car-
dinality b. For any zero-dimensional scheme Z ⊂ X and any effective Cartier
divisor D of X the residual scheme of Z with respect to D is the closed sub-
scheme of X with IZ : ID as its ideal sheaf. We have ResD(Z) ⊆ Z and deg(Z) =
deg(Z∩D)+deg(ResD(Z)). For any line bundle L on X we have an exact sequence
(the residual sequence of IZ ⊗ L with respect to D):

0→ IResD(Z) ⊗ L(−D)→ IZ ⊗ L → IZ∩D,D ⊗ L|D → 0 (1)

For any L ∈ Pic(X), any linear subspace V ⊆ H0(X,L) and any zero-dimensional
scheme Z ⊂ X set V (−Z) := V ∩H0(X, IZ ⊗ L).

For any integral variety M and any o ∈Mreg let (2o,M) be the first infinitesimal
neighborhood of o in M , i.e. the closed subscheme of M with (Io,M )2 as its ideal
sheaf.

Lemma 2.1. Let X ( Pr, be an integral and non-degenerate variety, which is
scheme-theoretically cut out by quadrics. Then X is not tangentially degenerate.

Proof. Take a general q ∈ Xreg and a general line L ⊂ Pr tangent to Xreg at q and
assume that (L ∩ X)red contains a point o 6= q. Since the connected component
of L ∩ X containing q contains the divisor 2q of L and X is scheme-theoretically
cut out by quadrics, we have L ⊂ X. Since L is general, we get τ(X) ⊆ X and so
τ(X) = X. Let M ⊂ Pr be a general linear space with codimension n − 1. The
scheme X ∩M is an integral curve spanning M and we get τ(X ∩M) = X ∩M ,
contradicting the assumption X ( Pr. �

Remark 2.2. The homogeneous ideal of a Segre-Veronese variety X ⊂ Pr is gen-
erated by the 2× 2 minors of flattenings ([17, Theorem 6.10.6.5]) and in particular
(unless X = Pr) it is not tangentially degenerate by Lemma 2.1. Just to know that
X is scheme-theoretically cut out by quadrics (to be able to apply Lemma 2.1) is
easier, since this is easily seen to be true if it is true for the Segre embedding of X.
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Lemma 2.3. Let X ⊂ Pr, r ≥ 3 + n, be an integral and non-degenerate n-
dimensional variety, which is non-singular in codimension 1. Let L ⊂ P3 be a
general tangent line to Xreg. Let `L : Pr \ L → Pr−2 denote the linear projection
from L. Then `L|X\X∩L is birational onto its image.

Proof. Since we are in characteristic zero, it is sufficient to prove that `L|X\X∩L
is generically injective, i.e. that for a general q ∈ X the plane 〈L ∪ {q}〉 intersects
X only in q and the set (X ∩ L)red. If n = 1, then this is true by [7, Lemma
2.5]. Now assume n > 1 and that the lemma is true for varieties of dimension < n.
Since n > 1, for a general hyperplane M ⊂ Pn the scheme X ∩M is an integral
variety non-singular in codimension 1 and spanning M . Since dimX∩M > 1, some
tangent line of Xreg is contained in M and it is tangent to (X ∩M)reg. Since L
is a general tangent line of Xreg, we get that for a general hyperplane H ⊃ L the
scheme X ∩H is integral and spans M . Since L is a general tangent line, the set
X ∩L is finite. Take p ∈ Xreg∩L such that L ⊂ TpX. Since dimTpX > 1 a general
H ⊃ L does not contain TpX, i.e. X ∩H is smooth at p. We move L among the
tangent lines of (X ∩H)reg and apply the inductive assumption to X ∩H. We get
that for a general q ∈ X ∩H the plane 〈L ∪ {q}〉 intersects X ∩H (and hence X)
only in q and the set (X ∩ L)red. Moving H among the hyperplanes containing L
we get the lemma. �

Lemma 2.4. Fix an integer b ≥ 2. Let X ⊂ Pr, r ≥ 4 + n, be an integral and
non-degenerate n-dimensional variety which is non-singular in codimension 1 and
take a general Z ∈ Z(X, b). Write Z = v t {p1, . . . , pb−2} with deg(v) = 2 and
v connected. Set L := 〈v〉 and M := 〈Z〉. Then dimM = b − 1 and X ∩M =
{p1, . . . , pb−2} ∪ (X ∩ L) (as schemes).

Proof. If b = 2, then L = M and the lemma is trivial. Now assume b > 2.
We have dimM = b− 1, because p1, . . . , pb−2 are general, X is non-degenerate and
n+1 ≤ r. Let `L : Pr\L→ Pr−2 denote the linear projection from L. Let Y ⊂ Pr−2

be the closure of `L(X \ X ∩ L). By Lemma 2.3 `L sends X \ L ∩ X birational
into Y and dimY = n. Since Z is general, we have pi /∈ L for all i and hence
the points qi := `L(pi) are well-defined. For a general Z the b-tuple (q1, . . . , qb−2)
is general in Y b−2. Hence N := 〈{q1, . . . , qb−2}〉 has dimension b − 3. Since we
are in characteristic zero, the trisecant lemma (also known as the uniform position
principle) ([6, p. 109]) implies that N ∩ Y = {q1, . . . , qb−2} (as schemes). Since
p1, . . . , pb−2 are general and `L is birational onto its image, we get the lemma. �

Remark 2.5. Let X ∈ Pr be an integral and non-degenerate variety. Set n :=
dimX. Let τ(X) ⊆ Pr be the tangential variety of X. In characteristic zero if
τ(X) 6= Pr we have X ⊆ Sing(τ(X)). For a general x ∈ τ(X) there is o ∈ Xreg and
a line L ⊆ ToX with x ∈ L\{o}. The tangent space of τ(X) is constant at all points
of τ(X)reg ∩ L. L is uniquely determined by a degree 2 zero-dimensional scheme
v ⊂ M such that vred = {o}. Let Z(o, v) denote the following zero-dimensional
scheme of X (and hence of Pr) with Z(o, v)red = {o} and deg(Z(o, v)) = 2n+ 1. It
is sufficient to define the ideal J of Z(o, v) in the local ring OX,o. Since OX,o is an
n-dimensional regular local ring, there is a regular system of parameters x1, . . . , xr
such that x21, x2, . . . , xn generate the ideal sheaf of v in Pr. Take as J the ideal
generated by all xixjxk, i, j, k ∈ {1, . . . , , n} and all x1xi, i = 1, . . . , xn. Now we
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check that this definition depends only on X, o and v, but not on the choice of
x1, . . . , xr. Let µ be the maximal ideal of OX,o. Take another regular system of
parameters y1, . . . , yn of OX,o with y21 , y2, . . . , yn generating the ideal sheaf of v in

X. Since OX,o is regular, the completion ÔX,o of OX,o with respect to its maximal
ideal is isomorphic to K[[x1, . . . , xn]]. In K[[x1, . . . , xn]] we have yi = Li +Mi, with
Mi a power series with no constant and no linear term, L1, . . . , Ln linear forms in
x1, . . . , xn with invertible Jacobian with respect to x1, . . . , xn and there is a non-
zero constant c such that x1 − cy1 ∈ (x2, . . . , xn) + µ2. Thus y1, . . . , yn gives the
same ideal. We have Txτ(X) ⊃ Z(o, v). Now assume that the scheme Z(o, v) is
linearly independent in Pr, i.e. that dim〈Z(o, v)〉 = 2n. Since dimToτ(X) = 2n
and Toτ(X) ⊃ Z(o, v), we get 〈Z(o, v)〉 = Toτ(X).

Proof of Theorem 1.2: Taking a linear projection we reduce to prove the theorem
when the map V ⊗W → H0(OPr (1)) is surjective. Let IV (resp. IW ) be proper
closed subschemes of X such that uV (resp. uW ) is an embedding over X \IV (resp.
X \ IW ) and u−1V (uV (X \ IV )) = X \ IV (resp. u−1W (uW (X \ IW )) = X \ IW ).

(a) In this step we prove that dimσb(X) = b(n+ 1)− 1. Fix a general S ⊂ X
with ](S) = b. Set Z := ∪o∈S(2o,X). By [3, Corollary 1.10] it is sufficient to prove
that h1(IZ(1)) = 0. We use induction on the integer b, starting the induction here
with the obvious case b = 1. Fix o ∈ S and set S′ := S \{o} and B := ∪o∈S′(2o,X).
By the inductive assumption we may assume h1(IB(1)) = 0. Thus it is sufficient to
prove that (2o,X) gives n+ 1 independent conditions to H0(IB(1)). Since we may
take o general after fixing S′, o is not in the base locus of H0(IB(1)). Take N ⊆ ToX
with 0 ≤ dimN ≤ n and maximal giving independent conditions to H0(IB∪{o}(1))
and let N ′ ⊆ (2o,X) the corresponding zero-dimensional scheme with deg(N ′) =
1+dimN . Assume N ′ 6= (2o,X) and fix N ′′ ⊆ (2o,X) with deg(N ′′) = deg(N ′)+1.
To get a contradiction it is sufficient to prove that H0(IN ′′(1)) ( H0(IN ′(1)).
Since S is general, we may assume S ∩ IV = S ∩ IW = ∅. Since uV and uW
are embedding at o, we have dimV (−N ′′) = dimV (−N ′) − 1. Since we may
take S′ general after fixing o, we have dimV (−N ′′) = dimV (−N ′) − 1. Take
f ∈ V (−N ′ − S′) \ V (−N ′′ − S′). Since we may take o general after fixing S′, we
have W (−S) 6= W (−S′). Take g ∈ W (−S′) \W (−S). The image of f ⊗ g shows
that H0(IN ′′(1)) ( H0(IN ′(1)).

(b) In this step we prove that dim τ(X, b) = b(n + 1) − 2. Fix a general
(o, o1, . . . , ob−2) ∈ Xb−1

reg and a general tangent vector v to X at o. Let Z ′ be
the degree 2n + 1 scheme associated to o and v as in Remark 2.5. Set Z ′′ :=
(2o1, X)∪ · · · ∪ (2ob−2, X) and Z := Z ′ ∪Z ′′. Since τ(X, b) is the join of τ(X) and
b − 2 copies of X, by Terracini lemma it is sufficient to prove that h1(IZ(1)) = 0.
For a general (o, o1, . . . , ob−2) we may assume o /∈ (IV ∪ IW ). Since uV and uW are
embeddings at o, we have dimV (−(2o,X)) = v − n − 1 and dimW (−(2o,X)) =
w − n − 1. Using V ⊗ W we see that H0(OPr (1)) separates the 2-jets of X at
o and in particular h1(IZ′(1)) = 0, concluding the proof of the case b = 2. We
proved also that (3o,X) is linearly independent in Pr, where (3o,X) is the closed
subscheme of X with (Io,X)3 as its ideal sheaf. Now assume b > 2 and that the last
assertion is true for the integer b− 1, i.e. assume that the zero-dimensional scheme
E := (3o,X) ∪ (2o1, X) ∪ · · · ∪ (2ob−3, X) is linearly independent. To prove that
dim τ(X, b) = b(n + 1) − 2 it is sufficient to prove that (3o,X) ∪ (2o1, X) ∪ · · · ∪
(2ob−2, X) is linearly independent. Fix an integer a ∈ {0, . . . , n} and schemes A1 ⊂
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A2 ⊆ (2ob−2, X) with deg(A1) = deg(A2)− 1 = a. By induction on a it is sufficient
to prove that H0(Pv−1, IE∪A2

(1)) ( H0(Pv−1, IE∪A1
(1)). Since dimσ2(XV ) =

2n + 1, Terracini’s lemma gives h1(Pv−1, I(2uV (o),XV )∪(2uV (ob−2),XV )(1)) = 0 and

hence h0(Pv−1, I(2uV (o),XV )∪uV (A2)(1)) < h0(Pv−1, I(2uV (o),XV )∪uV (Af )(1)). Take
f ∈ V (−(2o) − A2)) with f /∈ V (−(2o) − A1)). Since W is a local embedding at
o, o1, . . . , ob−2 are general and dimW ≥ n + b− 1, there is g ∈ W (−2(o,X)) such
that g(oi) = 0 if and only if i 6= b− 2. Use the image of f ⊗ g.

(c) In this step we prove that ](Z(X, b, q)) = 1 for a general q ∈ τ(X, b). Fix a
general q ∈ τ(X, b) and assume ](Z(X, b)) > 1 and so there are Z,A ∈ Z(X, b) with
Z 6= A. Since dim τ(X, q) = b(n+1)−2, a dimensional count shows that Z(X, b, q)
is finite for a general q ∈ τ(X, b). Hence we may assume that Z(X, b, q) is finite. A
dimensional count gives that Z and A are general in Z(X, b), but of course we do
not assume any generality for Z∪A. In particular we may assume Z∩(IV ∪IW ) = ∅
and A ∩ (IV ∪ IW ) = ∅. Since dimV > b, we get dimV (−Z) = dimV − b > 0. Let
D ⊂ X be the hypersurface whose equation is a general element of V (−Z). Let
E denote the residual scheme ResD(Z ∪ A) of Z ∪ A with respect to the effective
Cartier divisor D ⊂ X. Since Z ⊂ D, we have E = ResD(A). Thus E is a closed
subscheme of A and E = ∅ if and only if A ⊂ D. Note that each element of Z(X, b)
has only finitely many subschemes. Since dim τ(X, b) = b(n+1)−2 and q is general
in τ(X, b), we have q /∈ 〈Z ′〉 for any Z ′ ( Z and q /∈ 〈A′〉 for any A′ ( A. Since
q ∈ 〈Z〉 ∩ 〈A〉, A 6= Z, q /∈ 〈Z ′〉 for any Z ′ ( Z and q /∈ 〈A′〉 for any A′ ( A, we
have h1(Pr, IZ∪A(1)) > 0.

Since uV (X) is not singular in codimension 1 and it is embedded in a projective
space of dimension ≥ n + 2, uV (X) is not tangentially degenerate ([15, Theorem
3.1]). By Lemma 2.4 applied to XV ⊂ Pv−1 the scheme uV (Z) is the scheme-
theoretic theoretical base locus of XV ∩ 〈uV (Z)〉. Since A ∩ IV = ∅ and A 6= Z,
A is not contained in the base locus of V (−Z). Since D is a general element
of V (−Z), we get A * D, i.e. E 6= ∅. Since A is general in Z(X, b) we have
dimW (−A) = dimW − deg(A). Since E ⊆ A, we have dimW (−E) = w− deg(E),
a contradiction. The surjection V ⊗W → H0(OPr (1)|X) gives h1(Pr, IZ∪A(1)) = 0,
a contradiction.

(d) In this step we prove that rX(q) > b for a general q ∈ τ(X, b). Since
dim τ(X, b) > dimσb−1(X) by step (b), we have rX(q) = b. Take Z ∈ Z(X, b, q)
and S ∈ S(X, q). Since S ∈ S(X, q), there is no S′ ( S with q ∈ 〈S′〉. Since
dim τ(X, b) = b(n + 1) − 2, we may assume that Z is general in Z(X, b) and
that q /∈ 〈Z ′〉 for any Z ′ ( Z. Since Z is not reduced, we have Z 6= S. Hence
h1(IZ∪S(1)) > 0. As in step (c) we see that Z is the intersection of the open set
X \ IV with the scheme-theoretic base locus of V (−Z). Fix a general q ∈ τ(X, b)
and assume rX(q) ≤ b. Take Z ∈ Z(X, b, q). If we have S with S ∩ (IV ∪ IW ) = ∅
and dimW (−S) = w − b, then we may apply verbatim the proof in step (c) with
S instead of A. If S ∩ (IV ∪ IW ) = ∅ and dimV (−S) = v − b, then we may
apply the proof in step (c) taking (W,Z) instead of (V,Z) and (V, S) instead of
(W,A). Call ττ a non-empty open subset of τ(X, b) such that for each q ∈ ττ
we have rX(q) = b and q ∈ 〈Z〉 with Z sufficiently general in Z(X, b) (we need
dimW (−Z) = w− b, dimV (−Z) = v− b, Z ∩ (IV ∪ IW ) = ∅ and that (XV , uV (Z))
and (XW , uW (Z)) satisfy the thesis of Lemma 2.4). The set S(X, q) is constructible
and hence it makes sense to speak about the irreducible component of S(X, q) and
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of their dimension. Let σb(X)′ denote the set of all a ∈ σb(X) such that there is
a finite set B ⊂ X with ](B) = b, a ∈ 〈B〉 and a /∈ 〈B′〉 for any B′ ( B. The
set σb(X)′ is constructible (it is the image of a an open subset of the abstract
join of b copies of X). Hence τ := ττ ∩ σb(X)′ is constructible. By assumption
τ contains a non-empty open subset of τ(X, b) and hence it is irreducible and
of dimension b(n + 1) − 2. Let Γb ⊆ X(b) be the set of all S ∈ S(X, q) with
q ∈ τ . Since dim τ = n(b + 1) − 2, we have dim Γb ≥ nb − 1. If dim Γb = nb,
then for a general q ∈ τ we may take as S a general subset of X with cardinality
b, concluding the proof in this case. Thus we may assume that each irreducible
component of the constructible set Γb has dimension nb − 1. Thus there is a non-
empty open subset τ ′ of τ such that S(X, q) is finite for all q ∈ τ ′. Restricting
τ ′ if necessary we may assume that the positive integer ](S(X, q)) is the same
for all q ∈ τ ′. Let X(b) denote the symmetric product of b copies of X and let
m : Xb → X(b) be the quotient map. Let D be an irreducible component of
m−1(Γb) with dimension nb−1. For any i = 1, . . . , b let ηi : Xb → Xb−1 denote the
projection onto the factors with indices in {1, . . . , b} \ {i}. Since dimD = nb − 1
either ηi(D) contains a non-empty open subset of Xb−1 or the closure of ηi(D) is a
hypersurface ∆ of Xb−1 and D contains a non-empty open subset of X ×∆. Thus
there is j ∈ {1, . . . , s} such that ηj|D is dominant. Thus for a general q ∈ τ we

may find S = {p1, . . . , pb} ∈ S(X, q) with (p1, . . . , pb−1) general in Xb−1. Thus
dimV (−S′) = v − b+ 1 and dimW (−S′) = w − b+ 1, where S′ := {p1, . . . , pb−1}.
Hence pb is both in the base locus of V (−S′) and in the base locus of W (−S). This
is impossible, since X is embedded in Pr and (by our reduction at the beginning of
the proof) the image of the map ρ : V ⊗W → H0(OPr (1)) is surjective. �

Example 2.6. Fix integer s ≥ 1, ni > 0, di, ci, 1 ≤ i ≤ s, such that 0 < ci < di
for all i. Let X ⊂ Pr, r + 1 =

∏s
i=1

(
ni+di

ni

)
, be the Segre-Veronese embedding

of the multiprojective space Pn1 × · · · × Pns . Set V := H0(OX(c1, . . . , cs)), W :=
H0(OX(d1− c1, . . . , ds− cs)) and n := n1 + · · ·+ns. Fix an integer b ≥ 2 such that∏s

i=1

(
ni+ci
ni

)
≥ b + n + 2,

∏s
i=1

(
ni+di−ci

ni

)
≥ n + b + 2 and either s ≥ 3 or s = 2

and (c1, c2) 6= (1, 1) or s = 1 and c1 ≥ 3. We claim that dim τ(X, b) = b(n+ 1)− 2,
dimσb(X) = b(n + 1) − 1 and rX(q) > b and ](Z(X, b, q)) = 1 for a general
q ∈ τ(X, b). By Remark 2.2 to apply Theorem 2.6 it is sufficient to observe that the
variety σ2(XV ) has dimension 2n+ 1, where XV is the Segre-Veronese embedding
of X by the complete linear system |OX(c1, . . . , cs)|, by [1, Theorem 4.2].

3. Proof of Theorem 1.3

In this section X = Pn1 × · · · × Pns . For any i ∈ {1, . . . , s} let πi : X → Pni

denote the projection onto the i-th factor of X. Set OX(εi) := π∗i (OPni (1)). For any
E ⊆ {1, . . . , s} set OX(E) := ⊗i∈EOX(εi) ∈ Pic(X) and let πE : X →

∏
i∈E Pni

denote the projection onto the factors of X with label in E.

Proof of Theorem 1.3: There are many papers, which could be used to see that
dimσb(X) = b(n + 1) − 1 ([2], [13], and if ni = n for all i, [18] (case s = 3) and
[4], any s); this is also a consequence of [10, Corollary 4.15], which implies that
S(X, o) is finite for a general o ∈ σb(X). Take a general q ∈ τ(X, b). Thus there
is Z ∈ Z(X, b) with q general in 〈Z〉. Since q is general in τ(X, b), Z is general in
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Z(X, b) and q is general in 〈Z〉. In particular q /∈ 〈Z ′〉 for any Z ′ ( Z. Take an
integer c ≤ b and assume the existence of W ∈ (Z(X, c) ∪ A(X, c)) with q ∈ 〈W 〉
and q /∈ 〈W ′〉 for any W ′ ( W and W 6= Z. Since q ∈ (〈Z〉 ∩ 〈W 〉 \ 〈Z ∩W 〉), we
have h1(IZ∪W (1)) > 0.

(a) Fix a decomposition E t F with
∏

i∈E(ni + 1) > b and
∏

i∈F (ni + 1) > b.

In this step we prove that c = b and that h1(IW (E)) = 0 and H0(IW (E)) =
H0(IZ(E)); note that this would also imply that πE|G : G→ XE is an embedding.
Since c ≤ b <

∏
i∈E(ni + 1), there is D ∈ |OX(E)| with D ⊃ W . Thus ResD(Z ∪

W ) = ResD(Z) ⊆ Z. Since
∏

i∈E(ni + 1) > b and Z is general in Z(X, b) we have

h1(IZ(F )) = 0 and hence h1(IResD(Z)(F )) = 0. The residual exact sequence (1) of

IZ∪W (1) with respect D gives h1(D, I(Z∪W )∩D,D(E)) > 0.
(a1) Assume (Z ∪W )∩D 6= Z ∪W . Since W ⊂ D, we have Z ′ := Z ∩D ( Z.

Since ResD(W ) = ∅ and h1(X, IResD(Z∪W ) ⊗ OX(F )) = 0, the residual sequence
of IZ∪W (1) with respect to D gives 〈Z〉 ∩ 〈W 〉 = 〈Z ′〉 ∩ 〈W 〉. Thus q ∈ 〈Z ′〉, a
contradiction.

(a2) Assume (Z ∪ W ) ∩ D = Z ∪ W , i.e. Z ∪ W ⊂ D. By step (a1) we
may assume that this is true for all D ∈ |IW (E)|. Since deg(W ) ≤ deg(Z) and
h1(IZ(E)) = 0, we get deg(W ) = b, h1(IW (E)) = 0 (and in particular πE|W is an

embedding) and that H0(IZ(E)) = H0(IW (E)).
(a3) Exchanging the role of E and F we also get h1(IW (F )) = 0, that πF |W

is an embedding and that H0(IW (F )) = H0(IZ(F )).
(b) Take E and F as in step (a). Since Z is general in Z(X, b), the scheme

πE(Z) is general in Z(XE , b). Since H0(IZ(E)) = H0(IW (E)), Lemma 2.4 applied
to XE gives πE(W ) ⊆ πE(Z). Since πE|W is an embedding, we first get πE(W ) =
πE(Z) and then that W ∈ Z(X, q) and W /∈ A(X, q). This is sufficient to see
that rX(q) > b. By step (a3) we also get πF (W ) = πF (Z). Hence πi(W ) = πi(Z)
for all i ∈ {1, . . . , s}. This is not enough to say that W has only finitely many
possibilities (obviously Wred has only finitely many possibilities) and so to prove
that dim τ(X, b) = b(n+1)−2 we need to work more. Fix again a general q ∈ τ(X, b)
and assume that dim τ(X, b) < b(n+ 1)− 2, i.e. assume that Z(X, b, q) is infinite.
The set Z(X, b, q) is constructible and hence it makes sense to speak about the
dimensions of the irreducible components of Z(X, b, q). Since dim τ(X, b) < b(n +
1)−2, each of the irreducible components of Z(X, b, q) has positive dimension. Let
Γ be the irreducible component of Z(X, b, q) containing Z. A general U ∈ Γ may
be considered as a general element of Z(X, b) and hence we may apply Lemma
2.4 for XV and uV (U) and for XW and uW (U). Since there are only finitely
many sets Wred, W ∈ Γ, for a general U ∈ Γ \ {Z} we have Ured = Zred and so
deg(U ∩ Z) = b− 1. Since q ∈ (〈Z〉 ∩ 〈U〉 \ 〈Z ∩ U〉), we get 〈U〉 = 〈Z〉 and hence
U ⊂ 〈Z〉, contradicting Lemma 2.4. �
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