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Abstract. With some suitable Arens product, the dual space of the C∗ algebra

of left uniformly continous complex valued functions on a locally compact

group G admits a Banach algebra structure. The nature of the left invertible
elements is important for its connection with the Jacobson radical. Our aim

in this article is to determine conditions of left invertibility and some of their

consequences.

1. The Spaces LUC(G), RUC(G), UC(G), And Their Duals

1.1. Spaces of uniformly continuous functions. Throughout this article G
will denote a locally compact group with unit element e. Let LUC(G) (resp.
RUC(G)) be the B∗-subalgebras of Cb(G) of the left (resp. right) uniformly con-
tinuous functions on G, i.e. the functions x ∈ Cb(G) such that the mapping

g ∈ G
l(x)−−→g x ∈ Cb(G) (resp. g ∈ G

r(x)−−→ xg ∈ Cb(G)) is continuous, with

gx(h) = x(gh) (resp. xg(h) = x(hg)) if g, h ∈ G. We shall denote UC(G) the
space of uniformly continuous functions on G, i.e. UC(G) = LUC(G) ∩ RUC(G).
In particular, the mapping rL : G → B(LUC(G)) (resp. lL : G → B(LUC(G))) is
given such that rL(g)(x) = xg (resp. lL(g)(x) =g x) is a well defined representation
(resp. anti-representation) of G into LUC(G). With obvious changes we have sim-

ilar situations with mappings G
lR,rR−−−→ B(RUC(G)). Additionally, given x ∈ Cb(G)

and g ∈ G let ι(x)(g) = x(g−1). If we write ιLR = ι |LUC(G) and ιRL = ι |RUC(G)
then Im(ιLR) = RUC(G)), ιLR ∈ B(LUC(G), RUC(G)) and ιLR = ι−1

RL.

1.2. The Banach algebras LUC(G)∗ and RUC(G)∗. [3] [8] The dual spaces
LUC(G)∗ and RUC(G)∗ admit Banach algebra structures. For m,n ∈ LUC(G)∗,
p, q ∈ RUC(G)

∗
, x ∈ LUC(G), y ∈ RUC(G) and g ∈ G, let

⟨x,m2n⟩ = ⟨ρL(n)(x),m⟩ and ⟨y, p3q⟩ = ⟨ρR(p)(y), q⟩,
where

ρL : LUC(G)
∗ → B(LUC(G)), ρL(n)(x)(g) = ⟨gx, n⟩,

ρR : RUC(G)
∗ → B(RUC(G)), ρR(p)(y)(g) = ⟨yg, p⟩.

For brevity we shall also write ρL(n) = nl and ρR(p) = pr for each n ∈ LUC(G)
∗

and p ∈ UUC(G)
∗
. We now list some properties whose proofs are straightforward:
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(i) The mappings ρL and ρR are well defined contractive linear operators.
(ii) m2n ∈ LUC(G)

∗
.

(iii) p3q ∈ RUC(G)
∗
.

(iv) (LUC(G)
∗
,2) and (RUC(G)

∗
,3) become unital associative Banach algebras.

(v) ρL is a faithful continuous representation of LUC(G)∗ on LUC(G) and

Im(ρL) = {lL(g) : g ∈ G}c.
(vi) ρR is a bounded anti-representation of RUC(G)∗ on RUC(G) and

Im(ρR) = {rR(g) : g ∈ G}c.
(vii) ι∗LR(p3q) = ι∗LR(q)2ι

∗
LR(p) for all p, q ∈ RUC(G)

∗
.

(viii) The involution x → x∗ in UC(G), x∗(g) = x(g−1)−, induces an isometric
involution m → m∗ in UC(G)∗ so that ⟨x,m∗⟩ = ⟨x∗,m⟩−. As (m2n)∗ = n∗3m∗

for all m,n ∈ UC(G)
∗
, UC(G)∗ is a Banach *-algebra if G is abelian.

1.3. Connections with the measure algebra. The group measure algebra
M(G) of complex bounded regular Borel measures on G is naturally embedded in
LUC(G)∗ if, for µ ∈ M(G) and x ∈ LUC(G), we set ⟨x, µ̂⟩ =

∫
G
xdµ. It is straight-

forward to see that µ → µ̂ is a monomorphism of M(G) into LUC(G)∗. Separately,
the subspace C00(G) of Bb(G) of functions with compact support is clearly con-
tained in LUC(G). As a consequence of Urysohn’s lemma C0(G) ⊆ LUC(G), where
C0(G) = C00(G)− is the closed subspace of Cb(G) of functions which vanish at
infinity. In particular, if G is discrete then

LUC(G) = Cb(G) = l∞(G) = C0(G)−,

and LUC(G)∗ realizes as the space of bounded finitely additive complex measures
on G [9]. In the general case LUC(G)∗ = C0(G)⊥ ⊕1 M(G)

∧
and C0(G)⊥ is a

closed ideal in LUC(G)⊥ (cf. [7], Lemma 1.1). In particular, M(G) is isometrically
embedded onto a closed subalgebra of LUC(G)∗.

Proposition 1.1. The Banach algebra (LUC(G)∗,2) is never abelian.

Proof. Let g ∈ G, n ∈ LUC(G)
∗
and x ∈ LUC(G). If (LUC(G)

∗
,2) were abelian

we could write

0 = ⟨x, δ̂g2n− n2δ̂g⟩

= ⟨ρL(n)(x), δ̂g⟩ − ⟨ρL(δ̂g)(x), n⟩
= ⟨gx− xg, n⟩.

As n is arbitrary we infer that gx = xg, and as g is arbitrary then x(gh) = x(hg)
for all g, h ∈ G. By Urysohn’s lemma we infer that G is abelian. Hence LUC(G)
= UC(G) and UC(G)∗ becomes abelian. However, UC(G)∗ is non-abelian for any
locally compact abelian group G (cf. [13], Remark 1). □

1.4. Radicals of normed algebras. The Jacobson radical of any associative al-
gebra is the intersection of their maximal modular ideals. In the case of a complex
Banach algebra U its Jacobson radical J(U) is the totality of elements a ∈ U such
that (ab)n → 0U (or (ba)n → 0U) for every b ∈ U (cf. [10], Th. 15).
In the case of normed algebras it is natural to consider topologically irreducible
representations, i.e. continuous homomorphisms of the algebra into algebras of
bounded operators on Banach spaces without non-trivial closed invariant subspaces.
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In this setting, given a complex normed algebra U , its topologically irreducible ra-
dical T(U) is defined as the intersection of the kernels of all the continuous topo-
logically irreducible representations of U . Plainly, any strictly irreducible represen-
tation is topologically irreducible. However, there exists topologically irreducible
representations which are not strictly irreducible. Hence, the topologically irre-
ducible radical can be strictly smaller than the Jacobson radical (cf. [5], Example
3.1). It is worth mentioning that both radicals coincide for C∗ algebras [11]. Even
if G is abelian this fact does not apply to UC(G)∗, since this *-algebra is not of
type C∗.

1.5. The radical of LUC(G)∗. The Banach algebra LUC(G)∗ is known to not be
semisimple (cf. [1], Propositions 3 and 4). However, the precise determination of its
radical seems to be elusive. The structure of some of their maximal ideals is known.
Indeed, any maximal ideal M of LUC(G)∗ which contains C0(G)⊥ determines a

maximal ideal Mc of M(G) so that M = Mc ⊕ C0(G)
⊥

(cf. [6], Th. 2.3).

1.6. Our aims and main results. Given an associative Banach algebra U with
unit e its Jacobson radical J(U) consists of the elements a ∈ U such that e+xa is left
invertible for all x ∈ U (cf. [4], (1.5.1), p. 69). Consequently, the characterization of
the left invertible elements of LUC(G)∗ is relevant in connection with its Jacobson
radical. We provide this characterization in Th. 2.1. In Corollary 2.4 we shall
relate the Jacobson radicals of LUC(G)∗ and M(G). In Corollary 2.5, for a locally
compact abelian group G, we shall infer that the Jacobson radical of LUC(G)∗ is
contained in C0(G)⊥.

2. Left Invertibility In LUC(G)*

Theorem 2.1. If an element m + µ̂ ∈ LUC(G)
∗
is left invertible the following

conditions hold:
(i) There exists a positive constant c such that ∥ (m + µ̂)l(x) ∥≥ c | x(e) | for all
x ∈ LUC(G).
(ii) µ ∈ Invl(M(G)).
(iii) (m+ µ̂)−1

l (C0(G)) ⊆ C0(G).
When G is abelian the above conditions are also sufficient for the left invertibility
of m+ µ̂ ∈ UC(G)

∗
.

Proof. Let n+ ν̂ ∈ LUC(G)
∗
such that (n+ ν̂)2(m+ µ̂) = δe. Then (ν ∗µ)∧ = δ̂e

and so ν ∗ µ = δe and (ii) holds. Given x ∈ LUC(G) we can write

| x(e) | =| ⟨x, (n+ ν̂)2(m+ µ̂)⟩ |
=| ⟨(m+ µ̂)l(x), n+ ν̂⟩ |
≤∥ n+ ν̂ ∥∥ (m+ µ̂)l(x) ∥ .

With c =∥ n + ν̂ ∥−1 we obtain (i). Now, if x ∈ (m + µ̂)−1
l (C0(G)) we let

z = (m + µ̂)l(x). It is straightforward to see that the mapping u ∈ LUC(G)
∗ →

ul ∈ B(LUC(G)) defines a bounded homomorphism of Banach algebras. In fact it
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represents the elements of LUC(G)∗ as bounded endomorphisms of LUC(G). Now,

ν̂l(z) = (n+ ν̂)l(z)

= ((n+ ν̂)l ◦ (m+ µ̂)l)(x)

= ((n+ ν̂)2(m+ µ̂))l(x)

= (δ̂e)l(x)

= IdLUC(G)(x)

= x.

Consequently x ∈ C0(G) ([8], Lemma 19.5).
From now on let us assume that G is abelian and that m + µ̂ ∈ UC(G)

∗
satisfies

conditions (i), (ii) and (iii). Thus C0(G) ⊆ ran[(m + µ̂)l]. Let z ∈ C0(G) and
η ∈ M(G) such that η ∗µ = δe. Since (η̂)l(z) ∈ C0(G) and given g ∈ G, we see that

(m+ µ̂)l[(η̂)l(z)](g) = (µ̂)l[(η̂)l(z)](g)

=

∫
G

(η̂)l(z)(gh)dµ(h)

=

∫
G

∫
G

z(ghk)dη(k)dµ(h)

= ⟨gz, η ∗ µ⟩
= z(g),

i.e. z = (m+µ̂)l[(η̂)l(z)]. Now, let p : Im[(m+µ̂)l] → C so that ⟨w, p⟩ = −⟨y, η̂2m⟩
if w = (m+ µ̂)l(y) for some y ∈ UC(G). Given y′ ∈ ker[(m+ µ̂)l] we have

⟨y′, η̂2m⟩ = ⟨ml(y
′), η̂⟩ = −⟨(µ̂)l(y), η̂⟩ = −⟨y′, δ̂e⟩ = 0.

Thus p is a well defined function on ran(m+ µ̂)l. Furthermore, if w = (m+ µ̂)l(y)
belongs to C0(G), then by (iii) y ∈ C0(G). Hence ⟨w, p⟩ = −⟨ml(y), η̂⟩ = 0 because
ml(y) = 0UC(G). Clearly p is a complex linear functional and continuing with the

above notation we have

| ⟨y, η̂2m⟩ | =| ⟨ml(y), η̂⟩ |
=| ⟨(m+ µ̂)l(y), η̂⟩ − ⟨µ̂(y), η̂⟩ |

≤∥ η̂ ∥∥ (m+ µ̂)l(y) ∥ + |
∫
G

∫
G

y(gh)dµ(g)dη(h) |

=∥ η̂ ∥∥ (m+ µ̂)l(y) ∥ + | y(e) |
≤ (∥ η ∥ +c−1) ∥ (m+ µ̂)l(y) ∥ .

Thus the Hahn-Banach theorem provides a linear extension p1 : UC(G) → C such
that | ⟨x, p1⟩ |≤ (∥ η ∥ +c−1) ∥ x ∥ for all x ∈ UC(G), i.e. p1 ∈ UC(G)

∗
. Moreover,

p1 ∈ C0(G)
⊥

and clearly (p1 + η̂)2(m+ µ̂) = δ̂e. □

Corollary 2.2. Let m ∈ LUC(G)
∗
. The following conditions are necessary for the

left invertibility of m in LUC(G)∗:
(i) The operator ml ∈ B(LUC(G)) is bounded from below.
(ii) j∗(m) ∈ Invl(M(G)), where j denotes the inclusion map of C0(G) into LUC(G).
(iii) m−1

l (C0(G)) ⊆ C0(G).
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If G is an abelian locally compact group these conditions are also sufficient for the
left invertibility of m in UC(G)∗.

Proof. Given x ∈ LUC(G) and h ∈ G we observe that

∥ ml(x) ∥ = sup
g∈G

| ml(x)(g) |

= sup
g∈G

| ⟨gx,m⟩ |

= sup
g∈G

| ⟨hgx,m⟩ |

= sup
g∈G

| ⟨g(hx),m⟩ |

=∥ ml(hx) ∥ .

So the condition (i) of Theorem 2.1 holds if and only if there exists c ∈ R>0 such
that ∥ ml(x) ∥≥ c ∥ x ∥. Now the claim follows by Theorem 2.1. □

Corollary 2.3. Let G be a locally compact abelian group and let m ∈ Invl(UC(G)*).
Then ran(ml) is closed, C0(G) ⊆ ran(ml) and

ran(ml)
C0(G) ≈ UC(G)

C0(G) .

Proof. Since ml is bounded from below, its range is closed, and as seen in the
proof of Theorem 2.1, it contains C0(G). Let us define

Tm : UC(G)/C0(G) → UC(G)/C0(G),

Tm(x+C0(G)) = ml(x) + C0(G) if x ∈ UC(G).

Since C0(G) is ml-invariant Tm is a well defined mapping that it is clearly complex
linear. Furthermore, given x ∈ UC(G) and z ∈ C0(G) we see that

∥ ml(x) + C0(G) ∥=∥ ml(x− z) + C0(G) ∥≤∥ ml ∥∥ x− z ∥,

or in other words, ∥ ml(x) + C0(G) ∥≤∥ ml ∥∥ x + C0(G) ∥. It then follows that
Tm ∈ B(UC(G)/C0(G)) and ∥ Tm ∥≤∥ ml ∥.
The set ran(Tm) = ran(ml)/C0(G) is thus closed and ran(Tm) ≈ UC(G)/C0(G)
because, by Corollary 2.2, Tm is injective. Finally, it suffices to observe that
ran(Tm) = (ran(ml) + C0(G))/C0(G). □

Corollary 2.4. If m ∈ J(LUC(G)
∗
) then j∗(m) ∈ J(M(G)).

Proof. By the Hahn-Banach theorem j∗ maps LUC(G)
∗
onto M(G). Furthermore,

it is multiplicative. For, let l, n ∈ LUC(G)
∗
and z ∈ C0(G). Given g ∈ G plainly

gz ∈ C0(G) and

nl(z)(g) = ⟨gz, n⟩ = ⟨gz, j∗(n)⟩ =
∫
G
z(gh)dj∗(n)(h).
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By [8], Lemma 19.5, nl(z) ∈ C0(G), so by Fubini’s theorem we can write

⟨z, j∗(l) ∗ j∗(n)⟩ =
∫
G

∫
G

z(gh)dj∗(l)(g)dj∗(n)(h)

=

∫
G

∫
G

z(gh)dj∗(n)(h)dj∗(l)(g)

=

∫
G

nl(z)(g)dj
∗(l)(g)

= ⟨nl(z), l⟩
= ⟨z, j∗(l2n)⟩

and as z is arbitrary the claim follows.

Since m ∈ J(LUC(G))
∗
we know that δ̂e + LUC(G)

∗
2m ⊆ Invl(LUC(G)

∗
). Thus

δe +M(G) ∗ j∗(m) ⊆ Invl(M(G))

and j∗(m) ∈ J(MG) (cf. [2], Prop. 24.16(iii); [4], Th. 1.5.2(iii)). □

Corollary 2.5. If G is abelian then J(UC(G)
∗
) ⊆ C0(G)

⊥
.

Proof. If G is abelian the measure algebra M(G) becomes semisimple and the
conclusion follows from (1.3) and Corollary 2.4 (cf. [12], A.3.3, p. 329). □
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