
NEW ZEALAND JOURNAL OF MATHEMATICS
Volume 50 (2020), 61–70

SPECTRUM OF k-QUASI-CLASS An OPERATORS

Mohammad H. M. Rashid

(Received 22 November, 2017)

Abstract. In this paper, we introduce a new class of operators, called k-quasi-

class An operators, which is a superclass of class A and a subclass of (n, k)-
quasiparanormal operators. We will show basic structural properties and some

spectral properties of this class of operators. We show that, if T is of k-

quasi-class An then T − λ has finite ascent for all λ ∈ C. Also, we will
prove T is polaroid and Weyl’s theorem holds for T and f(T ), where f is an

analytic function in a neighborhood of the spectrum of T . Moreover, we show

that if λ is an isolated point of σ(T ) and E is the Riesz idempotent of the
spectrum of a k-quasi-class An operator T , then EH = ker(T − λ) if λ 6= 0

and EH = ker(Tn+1) if λ = 0.

1. Introduction

Let H be an infinite dimensional complex Hilbert and B(H ) denote the algebra
of all bounded linear operators acting on H . Every operator T can be decomposed
into T = U |T | with a partial isometry U , where |T | is the square root of T ∗T .
If U is determined uniquely by the kernel condition ker(U) = ker(|T |), then this
decomposition is called the polar decomposition, which is one of the most important
results in operator theory (for example see [6], [9], [12] and [13]). In this paper,
T = U |T | denotes the polar decomposition satisfying the kernel condition ker(U) =
ker(|T |).

An easy extension of normal operators, hyponormal operators have been studied
by many researchers. Though there are many unsolved interesting problems for this
class (for example the invariant subspace problem), one of recent trends in operator
theory is to study natural extensions of hyponormal operators. Here we introduce
some of these non-hyponormal operators. Following [8], an operator T ∈ B(H )
is said to be hyponormal if T ∗T ≥ TT ∗. An operator T ∈ B(H ) is said to be

paranormal if ‖Tx‖2 ≤
∥∥T 2x

∥∥ for every unit vector x ∈ H ([7]). Furthermore,

T ∈ B(H ) is said to be n-paranormal operator, if ‖Tx‖n+1 ≤
∥∥Tn+1x

∥∥ ‖x‖n for
all x ∈H ([5]). An operator T is said to be (n, k)-quasiparanormal as in [19], if∥∥T (T kx)

∥∥ ≤ ∥∥Tn+k+1x
∥∥ 1

n+1
∥∥T kx∥∥ n

n+1

for all x ∈H . T. Furuta et al. introduced in [8] a very interesting class of bounded
linear operators in Hilbert space: operators satisfying defined by |T 2| ≥ |T |2, which
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we call class A here. They showed that class A is a subclass of paranormal operators.
Hence, we have

{Hyponormal} ⊂ {class A} ⊂ {paranormal}
⊂ {n-paranormal} ⊂ {(n, k)-quasiparanormal}.

Throughout this paper, we shall denote the spectrum, the point spectrum and
the isolated points of the spectrum of T ∈ B(H ) by σ(T ), σp(T ) and isoσ(T )
respectively. The range and the kernel of T ∈ B(H ) will be denoted by R(T )
and ker(T ), respectively. We shall denote the set of all complex numbers and the
complex conjugate of a complex number λ by C and λ, respectively. The closure
of a set S will be denoted by S and we shall henceforth shorten T − λI to T − λ.

In this paper, we introduce a new class of operators, called k-quasi-class An
operators, which is a superclass of class A and a subclass of (n, k)-paranormal
operators. We will show basic structural properties and some spectral properties of
this class of operators. We show that, if T is k-quasi-class An then T −λ has finite
ascent for all λ ∈ C. Also, we will prove T is isoloid and Weyl’s theorem holds for
T and f(T ), where f is an analytic function in a neighborhood of the spectrum of
T . It is also shown that if E is the Riesz idempotent for a non-zero isolated point
of the spectrum of ak-quasi-class An operator T , then EH = ker(T − λ) if λ 6= 0
and EH = ker(Tn+1) if λ = 0.

2. Spectral Properties of k-quasi-class An Operators

Definition 2.1. An operator T ∈ B(H ) is said be of class An (equivalently
T ∈ An) if

|Tn+1|
2

n+1 ≥ |T |2

for some positive integer n.

Remark 2.2. From the previous definitions, we have that
(i) for n = 1, then A1 coincides with the set of class A operators.
(ii) if T ∈ An, then T is n-paranormal.

Theorem 2.3. If T ∈ An, then T is normaloid.

Proof. Let T be of class An. We may assume ‖T‖ = 1. Let ‖x‖ = 1. Then

‖Tx‖n+1
=
〈
|T |2x, x

〉n+1
2 ≤

〈
|Tn+1|

2
n+1x, x

〉n+1
2

≤
〈
|Tn+1|2x, x

〉 1
2 =

∥∥Tn+1x
∥∥ ≤ ∥∥Tn−1∥∥∥∥T 2x

∥∥ ≤ ∥∥T 2x
∥∥ ≤ 1.

Hence

‖Tx‖n+1

‖x‖n
≤
∥∥T 2x

∥∥ ≤ ‖x‖ for x 6= 0. (2.1)

Since ‖T‖ = 1, there exists a sequence of unit vectors {xj} such that ‖Txj‖ → 1.
Then (2.1) implies

1← ‖Txj‖n+1 ≤
∥∥T 2xj

∥∥ ≤ ‖xj‖ = 1.
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Hence
∥∥T 2xj

∥∥ → 1 and
∥∥T 2

∥∥ = 1 = ‖T‖2. By taking Tx instead of x in (2.1), we
have ∥∥T 2x

∥∥n+1

‖Tx‖n
≤
∥∥T 3x

∥∥ ≤ ‖Tx‖ . (2.2)

Hence

1←
∥∥T 2xj

∥∥n+1

‖Txj‖n
≤
∥∥T 3xj

∥∥ ≤ ‖Txj‖ → 1.

Hence
∥∥T 3xj

∥∥→ 1 and
∥∥T 3

∥∥ = 1 = ‖T‖3. Similarly, we have ‖Tn‖ = ‖T‖n. Thus
T is normaloid. �

Definition 2.4. We say that an operator T ∈ B(H ) is said to be of k-quasi-class
An (equivalently T ∈ Q(An, k)) if

T ∗k(|Tn+1|
2

n+1 − |T |2)T k ≥ 0

for some positive integers m and k.

Note that for n = 1, the set of k-quasi-class An operators coincides with the set of
k-quasi-class A operators.

Example 2.5. Suppose that H is the direct sum of a denumerable number of
copies of two dimensional Hilbert space R × R and let A and B be two positive
operators on R×R. For any fixed positive integer m, define an operator T = TA,B,m
on H as follows:

T ((x1, x2, · · · )) = (0, A(x1), A(x2), · · · , A(xm), B(xm+1), · · · ).

It’s adjoint T ∗ is given by

T ∗((x1, x2, · · · )) = (A(x2), A(x3), · · · , A(xm), B(xm+1), · · · ).

For any m ≥ n, T = TA,B,m is of k-quasi-class An if and only if A and B satisfies

Ak(An+1−iB2iAn+1−i)
2

n+1Ak ≥ A2+2k for i = 1, · · · , n.

If A =

(
1/2 0
0 0

)
and B =

(
1 1
1 1

)
, then T is of k-quasi-class A2.

Since S ≥ 0 implies R∗SR ≥ 0, the following result is trivial. The converse is
also true if T has dense range.

Lemma 2.6. If T ∈ An for some integer n ≥ 1, then T ∈ Q(An, k) for every
integer k ≥ 1.
Lemma 2.7. [10, Hansen’s Inequality] If A,B ∈ B(H ) satisfy A ≥ 0 and ‖B‖ ≤
1, then

(B∗AB)α ≥ B∗AαB for all α ∈ (0, 1].

Lemma 2.8. Let T ∈ Q(An, k) and T k does not have a dense range. Then

T =

(
T1 T2
0 T3

)
on H = <(T k)⊕ ker(T ∗k),

where T1 = T |<(Tk)
is the restriction of T to <(T k), T1 ∈ An and T3 is nilpotent

of nilpotency k. Moreover, σ(T ) = σ(T1) ∪ {0} .
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Proof. Consider the matrix representation of T with respect to the decomposition

H = <(T k)⊕ ker(T ∗k):

T =

(
T1 T2
0 T3

)
.

Let P be the orthogonal projection onto <(T k). Then

(
T1 0
0 0

)
= TP = PTP.

Since T ∈ Q(An, k), we have

P
(
|Tn+1|

2
n+1 − |T |2

)
P ≥ 0.

We remark that

P |T |2P = PT ∗TP =

(
|T1|2 0

0 0

)
.

Then by Lemma 2.7

P |Tn+1|
2

n+1P = P (T ∗(n+1)Tn+1)
1

n+1P

≤
(
PT ∗(n+1)Tn+1P

) 1
n+1 ≤

(
(TP )∗(n+1)(TP )n+1

) 1
n+1

=

(
|Tn+1

1 |2 0
0 0

) 1
n+1

=

(
|Tn+1

1 |
2

n+1 0
0 0

)
.

Therefore (
|Tn+1

1 |
2

n+1 0
0 0

)
≥ P |Tn+1|

2
n+1P ≥ P |T |2P =

(
|T1|2 0

0 0

)
,

i.e., T1 ∈ An. On the other hand if u =

(
u1
u2

)
∈H , then〈

T k3 u2, u2
〉

=
〈
T k(I − P )u, (I − P )u

〉
=
〈
(I − P )u, T ∗k(I − P )u

〉
= 0,

which implies that T k3 = 0. It is well known that σ(T1)∪σ(T3) = σ(T )∪C, where C is
the union of certain of the holes in σ(T ) which happen to be subset of σ(T1)∩σ(T3)
and σ(T1) ∩ σ(T3) has no interior points. Therefore, we have

σ(T ) = σ(T1) ∪ σ(T3) = σ(T1) ∪ {0} .

�

Lemma 2.9. Let T ∈ B(H ) be of k-quasi-class An and M be its invariant sub-
space. Then the restriction T |M of T to M is also of k-quasi-class An.

Proof. Let Q be the orthogonal projection onto M . Decompose

T =

(
T1 T2
0 T3

)
on H = M ⊕M⊥.

Then

|T1|2 = (Q|T |2Q)|M
and

|Tn+1
1 |

2
n+1 = (Q|Tn+1|2Q)

1
n+1 |M .
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Let x ∈M . Then〈
T ∗k1 |T1|2T k1 x, x

〉
=
〈
T ∗k1 (Q|T |2Q)|MT k1 x, x

〉
=
〈
|T |2T kx, T kx

〉
≤
〈
|Tn+1|

2
n+1T kx, T kx

〉
=
〈
T ∗k1 (Q|Tn+1|2Q)

1
n+1 |MT k1 x, x

〉
≤
〈
T ∗k1 |Tn+1

1 |
2

n+1T k1 x, x
〉
.

�

Recall from [19] that an operator T ∈ B(H ) is said to be (n, k)-quasiparanormal
if ∥∥T k+1x

∥∥ ≤ ∥∥Tn+k+1x
∥∥ 1

n+1
∥∥T kx∥∥ n

n+1

for all x ∈H . We also need the following lemma in the sequel.

Lemma 2.10. [3, Hölder-McCarthy inequality] Let T ∈ B(H ) be a positive oper-
ator. Then the following inequalities hold for all x ∈H :

(i) 〈T rx, x〉 ≤ 〈Tx, x〉r ‖x‖2(1−r) for 0 < r < 1,

(ii) 〈T rx, x〉 ≥ 〈Tx, x〉r ‖x‖2(r−1) for r ≥ 1.

Theorem 2.11. Let T ∈ B(H ). If T ∈ Q(An, k), then T is (n, k)-quasiparanormal
operator.

Proof. Since T ∈ Q(An, k), by the Hölder-McCarthy inequality, we have∥∥T (T kx)
∥∥2 =

〈
T ∗k|T |2T kx, x

〉
≤
〈
T ∗k|Tn+1|

2
n+1T kx, x

〉
≤
〈
|Tn+1|2T kx, T kx

〉 1
n+1

∥∥T kx∥∥ 2n
n+1

=
∥∥Tn+k+1x

∥∥ 2
n+1

∥∥T kx∥∥ 2n
n+1

and so ∥∥T k+1x
∥∥ ≤ ∥∥Tn+k+1x

∥∥ 1
n+1

∥∥T kx∥∥ n
n+1 ,

thus T is (n, k)-quasiparanormal operator. �

Theorem 2.12. Let T ∈ B(H ). If T ∈ Q(An, k) has a dense range, then T is of
class An.

Proof. Since T has dense range, R(T k) = H . Then for any y ∈H there exists a
sequence {xm} ⊂H such that lim

n−→∞
T kxm = y. Since T ∈ Q(An, k), we have〈

T ∗k|Tn+1|
2

n+1T kxm, xm

〉
≥
〈
T ∗k|T |2T kxm, xm

〉
〈
|Tn+1|

2
n+1T kxm, T

kxm

〉
≥
〈
|T |2T kxm, T kxm

〉
for all m ∈ N. By the continuity of the inner product, we have〈

(|Tn+1|
2

n+1 − |T |2)y, y
〉
≥ 0.

Therefore T is a class An operator. �

Corollary 2.13. Let T ∈ B(H ). If T ∈ Q(An, k) but is not of class An, then T
is not invertible.
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Lemma 2.14. Let T ∈ B(H ). If T ∈ An and σ(T ) = {λ}, then T = λ.

Proof. Since T ∈ An, T is n-paranormal. Hence the result follows from [17]. �

Theorem 2.15. Let T ∈ B(H ). If T ∈ Q(An, k) and σ(T ) = {λ}, then T = λ if
λ 6= 0 and T k+1 = 0 if λ = 0.

Proof. If the range of T k is dense, then T is of class An. Hence T = λ by Lemma
2.14. If the range of T k is not dense, then

T =

(
T1 T2
0 T3

)
on H = R(T k)⊕ ker(T ∗k)

where T1 ∈ An, T k3 = 0 and σ(T ) = σ(T1)∪{0} by Lemma 2.8. In this case, λ = 0.
Hence T1 = 0 by Lemma 2.8 and Lemma 2.14. Thus

T k+1 =

(
0 T2
0 T3

)k+1

=

(
0 T2T

k
3

0 T k+1
3

)
= 0.

�

By similar proof of Theorem 4.2 of [14], we have:

Theorem 2.16. If T ∈ Q(An, k) and (T − λ)x = 0 for λ 6= 0, then |Tn+1|x =
|λ|n+1x, hence (Tn+1 − λn+1)∗x = 0.

Proof. The proof of |Tn+1|x = |λ|n+1x is similar to the proof of Theorem 4.2 of
[14]. Then

|λ|n+2x = |Tn+1|2x = T ∗(n+1)Tn+1x = λn+1T ∗(n+1)x.

�

The theorem has the following implication.

Corollary 2.17. If T ∈ Q(An, k) and (T − α)x = 0, (T − β)x = 0 with αn+1 6=
βn+1, then 〈x, y〉 = 0.

Proof. We may assume β 6= 0. Then

αn+1 〈x, y〉 =
〈
Tn+1x, y

〉
=
〈
x, T ∗(n+1)

〉
= βn+1 〈x, y〉

and so 〈x, y〉 = 0. �

We say that T ∈ B(H ) has the single valued extension property (SVEP) at λ ∈ C,
if for every open neighborhood U of λ the only analytic function f : U → C which
satisfies equation (T − λ)f(λ) = 0 is the constant function f ≡ 0. The operator T
is said to have single valued extension property if T has SVEP at every λ ∈ C. An
operator T ∈ B(H ) has SVEP at every point of the resolvent ρ(T ) = C \ σ(T ).
Every operator T has SVEP at an isolated point of the spectrum.

Corollary 2.18. If T ∈ Q(An, k), then T has SVEP.

Proof. Let f be an analytic function on an open set D such that (T −α)f(α) = 0

for α ∈ D. Let α = reiθ 6= 0 and αm = r1+
1
m eiθ. Then

‖f(α)‖2 = lim 〈f(α), f(αm)〉 = 0

by Corollary 2.17. �



SPECTRUM OF k-QUASI-CLASS An OPERATORS 67

Corollary 2.19. Suppose that T is non-zero, is of k-quasi-class An and has no
nontrivial T -invariant closed subspace. Then T is a class An operator.

Proof. Since T has no non-trivial invariant closed subspace, it has no non-trivial

hyperinvariant subspace. But ker(T k) and R(T k) are hyperinvariant subspaces

where T 6= 0, hence we have ker(T k) 6= H and R(T k) 6= {0}. Therefore ker(T k) =

{0} and R(T k) = H . In particular, T has dense range. It follows from Corollary
2.12 that T is of class An operator. �

Recall that T ∈ B(H ) is said to have finite ascent if ker(Tn) = ker(Tn+1) for
some positive integer n.

Theorem 2.20. If T ∈ Q(An, k), then ker(T − λ) = ker(T − λ)2 if λ 6= 0 and
ker(T k) = ker(T k+1) if λ = 0. Consequently, T − λ has finite ascent for all λ ∈ C.

Proof. Assume 0 6= σp(T ) because the case λ /∈ σp(T ) is obvious. Let 0 6= x ∈
ker(T − λ)2, x = x1 ⊕ x2 ∈H = R(T k)⊕ ker(T k) and

T =

(
T1 T2
0 T3

)
on H = R(T k)⊕ ker(T k).

Then

0 = (T − λ)2x =

(
T1 − λ T2

0 T3 − λ

)(
x1
x2

)
=

(
(T1 − λ)2x1 + ((T1 − λ)T2 + T2(T3 − λ))x2

(T3 − λ)2x2

)
.

Consequently, x2 = 0 because T3−λ is invertible by Lemma 2.8. Thus (T1−λ)2x1 =
0 and (T1 − λ)x1 = 0 by Theorem 4.3 of [14]. Therefore

(T − λ)x = (T − λ)(x1 ⊕ 0) = (T1 − λ)x1 = 0.

If λ = 0 and x ∈ ker(T k+1), then it follows from Theorem 2.11 that∥∥T (T kx)
∥∥ ≤ ∥∥Tn+1(T kx)

∥∥ 1
n+1

∥∥T kx∥∥ n
n+1 = 0.

Hence T (T kx) = 0. Then x ∈ ker(T k). �

3. Riesz Idempotent for k-quasi-class An Operators

Let µ be an isolated point of σ(T ). Then the Riesz idempotent E of T with
respect to µ is defined by

E :=
1

2πi

∫
∂D

(ν − T )−1 dν,

where D is a closed disc centred at µ which contains no other points from the
spectrum of T . It is known that E2 = E,ET = TE, σ(T |R(E)) = {µ} and
ker(T − µ) ⊆ R(E). In [16], Stampfli showed that if T satisfies the growth condi-
tion G1, then E is self-adjoint and R(E) = ker(T − µ). Recently, Jeon and Kim
[11], Uchiyama [18] and Rashid [15] obtained Stampfli’s result for quasi-class A
operators, paranormal operators and k-quasi-∗-paranormal operators. In general
even if T is a paranormal operator, the Riesz idempotent E of T with respect to
µ is not necessarily self-adjoint. Recall that T ∈ B(H ) is called isoloid if every
isolated point of σ(T ) is an eigenvalue of T .
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Theorem 3.1. Let T ∈ B(H ). If T ∈ Q(An, k), then T is isoloid.

Proof. Suppose that T has a representation given in Lemma 2.8. Let z be an
isolated point in σ(T ). Since σ(T ) = σ(T1)∪ {0}, z is an isolated point in σ(T1) or
z = 0. If z is an isolated point in σ(T1) , then z ∈ σp(T1) ⊂ σp(T ) by Lemma 4.1

of [14]. Assume that z = 0 and z /∈ σ(T1). Then for x ∈ ker(T3), −T−11 T2x ⊕ x ∈
ker(T ). This achieves the proof. �

Theorem 3.2. Let T ∈ Q(An, k). Then T is polaroid. Let λ be an isolated point
of σ(T ) and E be Riesz idempotent for λ. Then EH = ker(T − λ) if λ 6= 0 and
EH = ker(Tn+1) if λ = 0.

Proof. Since EH is an invariant subspace of T and σ(T |EH ) = {λ}, we have
T |EH = λ if λ 6= 0 and (T |EH )k+1 = 0 if λ = 0 by Theorem 2.15. Hence
EH ⊂ ker(T |EH −λ) ⊂ ker(T −λ) if λ 6= 0 and EH ⊂ ker(T |EH )k+1 ⊂ kerT k+1

if λ = 0. Hence EH = ker(T − λ) if λ 6= 0 and EH = kerT k+1 by Lemma 5.2 of
[19]. Hence

T =

(
T1 0
0 T2

)
where σ(T1) = σ(T |EH ) = {λ} and σ(T2) = σ(T ) \ {λ}. Then T1 − λ is nilpotent
and T2 − λ is invertible. Hence T − λ has finite ascent and descent. Hence T is
polaroid.

�

4. Weyl’s Theorem for Q(An, k)

Let α(T ) and β(T ) be the nullity and the deficiency of T defined by α(T ) :=
dim ker(T ) and β(T ) := codim R(T ). An operator T ∈ B(H ) is called upper
semi-Fredholm if it has a closed range and α(T ) <∞, while T is called lower semi-
Fredholm if β(T ) < ∞. An operator T is semi-Fredholm if it is either upper or
lower semi-Fredholm, and it is said to be a Fredholm if it is both upper and lower
semi- Fredholm. If T ∈ B(H ) is semi-Fredholm, then the index is defined by

ind(T ) = α(T )− β(T ).

An operator T ∈ B(H ) is said to be upper semi-Weyl if it is upper semi-Fredholm
and ind(T ) ≤ 0 while T is said to be lower semi-Weyl if it is lower semi-Fredholm
and ind(T ) ≥ 0. An operator is Weyl if it is Fredholm and is of index zero.

The Weyl spectrum and the essential approximate spectrum are defined by

σw(T ) = {λ ∈ C : T − λ is not Weyl}.

According to [4] we say that Weyl’s theorem holds for T if T satisfies the equality

σ(T ) \ π00(T ) = σw(T ),

where π00(T ) is the set of the isolated points of σ(T ) that are eigenvalues of finite
multiplicity.

Theorem 4.1. If T ∈ Q(An, k), then Weyl’s theorem holds for f(T ), where f is
analytic and locally non-constant on an open set containing σ(T ).
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Proof. Since T has SVEP and T is polaroid, this result follows by Theorem 3.14
of [2]. �

Let Hol(σ(T )) be the space of all analytic functions in an open neighborhood of
σ(T ).

Theorem 4.2. Let T ∈ B(H ). If T or T ∗ is k-quasi-class An, then σw(f(T )) =
f(σw(T )) for all f ∈ Hol(σ(T )).

Proof. If either T ∈ Q(An, k) or T ∗ ∈ Q(An, k), then T has SVEP by Corollary
2.18 and so it follows from [1, Corollary 3.72] that σw(f(T )) = f(σw(T )) for all
f ∈ Hol(σ(T )) . �
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