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Abstract. Schwarz triangle functions play a fundamental role in the solutions
of the generalised Chazy equation. We determine the Schwarz triangle func-

tions that appear in the solutions in the cases where k = %, %, 2 and 3. Chazy
has shown that for the parameters £ = 2 and 3, the equations can be linearised.
Some of the Schwarz triangle functions that show up in the solutions to the
generalised Chazy equation with these two parameters also show up in the dual
cases where k = % and k = %, suggesting an intriguing connection between
the solutions for kK = 2 and k = 3 with dihedral and tetrahedral symmetry

respectively, and the solutions for k = %, % with Gg symmetry.

The generalised Chazy equation is a third order nonlinear autonomous ordinary
differential equation (ODE) given by

4
m(@/ -y*)?=0 (0.1)
for k # 6. The equation (0.1) was introduced by Jean Chazy in the papers [6] and
[7] when investigating the Painlevé property for third order ODEs.

Equation (0.1) is solved by Schwarz triangle functions [1]. Schwarz triangle
functions determine through their inverse a map from the complex upper half plane
to an open triangular domain with boundary given by the edges of the triangle.
The angles of the triangles determined by the Schwarz functions depend on the
parameter k in (0.1). When k£ < 6, the image is a spherical triangle and when
k > 6, the triangle is hyperbolic. In the limiting case as k tends to oo we obtain
Chazy’s equation, which has a solution given by the Eisenstein series of weight 2.
In this article we present the spherical Schwarz triangle functions corresponding to
the solutions when k is given by %, %, 2 and 3 and determine them algebraically.

These four parameters are chosen because the equations also show up in the
context of the geometry of differential equations. The problem of determining
whether the solution set of a system of differential equation is equivalent to another,
via for instance point or contact preserving transformation, can be solved using
Cartan’s method of equivalence.

The equations for the parameters k = 2 and k = 3 are shown to be linearisable
by Chazy himself ([7], p. 346). The equation when k = 2 is linearisable to the
ODE ¢ = 0. This is related to the third order Riccati equation as observed in
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[16]. Applying Cartan’s method of equivalence, this 4th order ODE has vanishing
Wilczynski invariants in the linear theory and also vanishing Bryant invariants in
the non-linear theory [4], [11], [14], [18]. We discuss the general solution when
k = 2 in Section 3.

The method of equivalence also applies to third order ODEs, as worked out
by Chern [8]. The equation for the parameter k = 3 turns out to be the only
equation of the form (0.1) that has vanishing Wiinschmann invariant. A third
order ODE with vanishing Wiinschmann invariant defines a conformal structure of
signature (2,1) on the space of its solutions. The conformal metric is obtained by
quotienting out a degenerate split signature symmetric 2-tensor by the vector field
that annihilates the distribution encoding the ODE y"' = F(x,y,p, q). ODEs with
vanishing Wiinschmann invariant and Fjee = 0, satisfied for the k£ = 3 equation,
are contact equivalent to the equation y”/ = 0 [13]. The generalised Chazy equation
for this parameter k = 3 is also linearisable and the general solution to this equation
is described in Section 5.

The equations for the parameters k = :I:% and k = :I:% show up in the local
equivalence problem for maximally non-integrable (or bracket generating) rank 2
distributions on 5-manifolds M that depend on a single function F(x). Here the
non-integrability condition implies that F"”’(z) # 0. For such non-integrable distri-
butions, the bracket of the vector fields spanning the distribution D determines a
filtration of the tangent bundle given by D C [D,D] C TM = [[D, D], D] with the
rank of D = 2 and the rank of [D, D] = 3. Such distributions are therefore also
known as (2,3, 5)-distributions. Cartan solved the local equivalence problem for
such geometries in [5] and constructed the fundamental curvature invariant. For
distributions of the form F'(x) as described, the curvature invariant vanishes when
F"(x) = ez J v(®)d% where y(z) is a solution to the generalised Chazy equation (0.1)
with parameter k = j:%. In this case the distribution has split G5 as its local group
of symmetries. Furthermore An and Nurowski [3] showed that there is a duality
that takes the solutions of this equation to the solutions of the 7th order ODE

10(y///)3y(7) _ 70(y///)2y(4)y(6) _ 49(y///)2(y(5))2 + 280y///<y(4))2y(5) _ 175(y(4)>4 -0

(0.2)
studied in [19] (where it appears in equation (6.64)), [11] and [12]. Historically,
this ODE appeared already in the thesis of Noth [17] in 1904, who showed that
this ODE admits the submaximal 10 dimensional group of contact symmetries on
the plane.

This dual ODE (0.2) can also be reduced to a generalised Chazy equation but
now the Chazy parameter is given by k = i%. In this fashion, the solutions with
parameters k = % and k = % give rise to (2,3, 5)-distributions with vanishing
Cartan curvature invariants. We discuss the solutions for both these equations in
Sections 4 and 6. We show in Appendix A that the Legendre duality property for
the generalised Chazy equations with parameters k = i% and k = i% is unique
only for these parameters.

Interestingly, one of the Schwarz triangle functions that solves the k = 2 equa-
tion also shows up in the solutions to the k = % equation. Three of the Schwarz
triangle functions that solve the k£ = 3 equation also show up in the solutions to
the k = 3 equation. For the k = 2 and k = 2 cases, the Schwarz triangle func-

2 3
tions are pullbacks through hypergeometric transformations of the Schwarz function
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s(;7 ;), 5,) that appears in Schwarz’s list [21] with dihedral symmetry. For the

k=3and k = 5 cases, the functions are pullbacks of the function s(%, :13, 5,7) that
appears in Schwarz’s list with tetrahedral symmetry. The result of Schwarz [21]
and Klein tells us that the Schwarz functions we obtain in these cases are algebraic.
The maps for the triangle functions that show up in the cases k = 2, 3 2and 3 are
given in the Diagrams 1, 2 and 3. They show the hypergeometric transformatlons
that are given by quadratic, cubic and quartic maps [15], [22].

Another motivation for the article is to work out the Schwarz functions that solve
the k = % and k= 5 equations and determine examples of (2,3, 5)- dlstrlbutlons
with maxmlal symmetry group of split Ga. The solutions to the k£ = 3 equation
have appeared in [20], but we present them more explicitly here in the form of Table
2. We also present the solutions when k& = % here. To work out the distributions
Dp(yy with vanishing Cartan curvature invariant, we have to determine F’(z) from
the solutions of the k = % Chazy equation and integrate twice further. This gives
an algebraic relation involving (z, F). The dual curve of this plane algebraic curve
gives us integral curves of equation (0.2).

The first two sections are background material. In Section 1 we set up the
preliminaries and consider S Ly (C) equivalent classes of solutions to (0.1). In Section
2 we review the definitions of Schwarz functions and in Sections 3, 4, 5, 6 we present
the Schwarz triangle functions that appear in the solutions of the Chazy’s equation
fork=2k= %, k=3and k = % respectively. The computations are done through
MAPLE 17.
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1. SL5(C) Action on the Space of Solutions

The material in the first two sections is collated from [1], [2], [7], [9] and [10].

[
We shall work over the complex field. Any element g = (2%) € SLy(C) acts on z
axr+b
cx+d”

Proposition 1.1. (See also [2], [9]) Under the action of SLy(C), for any solution
y(z) to the generalised Chazy equation (0.1) with k # 6, we obtain new solutions

to (0.1) by
1 ar+0b 6c
U = - . 1.1
§@) (cx+d)2y<cx+d> cx+d (L.1)

by fractional linear transformations g -z =2 =
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Proof. The action of SL, gives the differential relation dz = mdx and % =
(cz + d)* L. Differentiating equation (1.1), we find

(cx +d) (6§ — 7°) = 6y — ¢
and
(cx +d)%(97" — 997 +§°) = %" — Yy’ + v°,

where prime on the left hand side denotes differentiation with respect to x while
prime on the right hand side denotes differentiation with respect to . Differenti-
ating once more, we obtain

(67 — W)

4
8 [ ~ ~1/ ~ ~/\2
(CI + d) (y”/ — 2y//y + 3(y/) — m

4
— " — 2 AV /_22.
Y Yy +30) — 55526y —v)

We see that g(x) is a solution to (0.1) if and only if y(Z) is a solution as well. O
Let f(x) = exp(ﬁ J ydx). Chazy makes this substitution ([7], p. 321) and
finds that f satisfies the 4th order differential equation

111 ! e 3k(k - 2) N2 __
fI = (k=2)ff +m(f )? =0. (1.2)

It is immediate from (1.2) that when k& = 2, the equation becomes linear, and we
shall discuss this further in Section 3. When we integrate (1.1), we obtain

/ﬂ(x)dm :/my(@dx_/cﬁ "

= / y(2)dZ — 6log(cz + d) + ¢p.

We find that

f() =exp <]€26/§(a?)dx)

exp( %) ( 2 / ] ) exp(£%5)
=———5-exp|—— [y@)dF ) = ———5 f(@)
(chrd)’%ﬁ k—6 (c:c+d)k17—26
Absorbing constants (or normalising them so that ¢g = 0), we have
. 1 R
(cx + d)*-s

This motivates the following definition.

Definition 1.2. Suppose both functions f(z) and f(z) = (cx—&—d)_kl*—%f(a?) satisfy
the same differential equation (1.2). Then we say that the function f(x) has weight

2 since f(&) = (cx + d)%f(az) (following the convention in the literature about

weights of modular forms).
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Let us take k = 2 and suppose f(z) = (F"(x))~% for some F(x). Then F"(z)

has weight 3 under the action of SLs(C) and we find that F(x) satisfies the 6th
order ODE

10FO(F")3 — 80(F"2FO FO) — 51(F")2(F™)? (1.3)
+ 336F" (F")?FW — 224(F")* = 0
in [3] upon substituting f = (F”)~% into (1.2).
Proposition 1.3. If F(x) is a solution to the 6th order ODE (1.3), then so is

F(e) = (cx + )F (Z;”I;)

where ad — bec = 1.

According to the definition given above, the function F(z) has weight —1. We
have

Corollary 1.4. The function F(x) = 22 is a solution to the 6th order ODE (1.3),
and therefore so is

- ar+b 2 ax + b)?
F(ﬁ):(cx—i_d)(cx—kd) B (CJJ—|—d)

where ad — bec = 1.

Differentiating the above relation twice, we find that

- 1
F// — F// ~ .
@) = P @
Again the right hand side denotes differentiation with respect to . For any F(z)

with weight —1 satisfying the 6th order ODE (1.3), we identify the solutions

(. F@) = @, (ex + DF(g-2)) ~ (g2, F(g - 2)).

We define SLo(C) equivalent solutions to the generalised Chazy’s equation in
the following fashion (see also [9]).

Definition 1.5. Two solutions y(Z) and g(z) to the generalised Chazy equation
are said to be equivalent if there exists an element g of SLy(C) such that £ =g-x
and (1.1) holds for y(g - ) and g(z).
From this we can identify the solutions
(2, 9(x)) ~ (, (cx + d)*§(x) + 6c(cx + d)) = (Z,y(Z))-
A direct calculation shows that F(z) = 2™ form € {—1,0, %, %7 1,2} solves equation
(1.3) (see [5]). We restrict to the values for m € {—1, L, 2 2} so that F”(x) # 0, and

7393
investigate how the solutions for m € {—1, %, %, 2} are equivalent solutions under

SLs(C). Using that y(z) = 2L log(F"(x)), this gives y(z) = -5, y(z) = —42,
y(z) = —& and y(z) = 0 as solutions to the k = Z equation. The solution
y = —ﬁ - % for constants B, C was further obtained following [6] and

[7]. This corresponds to F(z) = (z + B)3(z 4 C)3.
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Proposition 1.6. The solutions to (0.1) for the parameter k = % given by y = —%,
Y= 73% and y = *ﬁ — ﬁ are equivalent in the sense of Definition 1.5.

Proof. Applying an arbitrary g = (¢4) € SL(C) to the solution given by y =

3 vt . —ec %
—&, we obtain § = —73(;1%) —3(%‘:%). Applying g1 = ( . _gé“rf:%f)) € SLy(C)
toy= _3(%-6) - 3(;72]0) with e # f, we obtain § = —19. To get back to y = —,
we use the transformation given by g = (70% 8) € SLy(C). O

As a consequence of Proposition 1.6, we see that the solutions given by F(x) =
(z+ B)3(z+C)3, 23 and z3 are equivalent to one another by this SL; action.

Proposition 1.7. The solutions to (0.1) for the parameter k = % giwen by y =0
6

and y = — are equivalent in the sense of Definition 1.5.
Proof. This is clear from applying g = ((1) _01) to the zero solution and its inverse

g = (25 §) toy=—2 to get the zero solution. U

2. Schwarz Functions and Equivalent Solutions under SL,(C)

The solutions to the generalised Chazy equation (0.1) can be expressed in terms
of logarithmic derivatives involving Schwarz triangle functions. This comes from
the following observation (see [1] and [2]). The equation (0.1) can be written as a
closed nonlinear system of first order autonomous differential equations, called the
generalised Darboux-Halphen system. From the first order system, the equations
can be transformed to a Schwarzian type equation with potential term V' (s). The
solutions are then given precisely by Schwarz triangle functions. Let prime denote
differentiation with respect to x.

Definition 2.1. A Schwarz triangle function s(«, 3,7, ) is a solution to the
following third order non-linear differential equation
(s)?
{s,z} + TV(S) =0 (2.1)

d [/s" 1/s"\?
et =5 (%) 5 (5)
is the Schwarzian derivative and

_1_ﬂ2+1_,)/2 52_’_,}/2_0{2_1
82 (s —1)2 s(s—1)

where

Vi(s)
is the potential.

A Schwarz triangle function determines through its inverse a mapping from the
complex upper half plane H = {z € C : Im(z) > 0} to the interior of a spherical,
planar or hyperbolic triangle A with angles between edges given by (am, S7,y7).
The edges of the triangle are given by circular arcs. The inverse map x : H — A is
single valued and meromorphic given by

oFi(a—c+1,b—c+1;2—¢8) 4_
z(s) = s
2F'1(a, b;c;s)

c. (2.2)
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The images of 0, co and 1 under x are the vertices of the triangle with one vertex
at the origin x(0) = 0 and the other vertex x(1) connected to 0 by an edge that is
real valued. The remaining vertex is x(cc). Here we have

o= 1—ac o)
bz%(l—i—a—ﬁ—ﬂ,
c=1-p.

In (2.2), z is given by the quotient of linearly independent solutions to the

hypergeometric differential equation
s(1—58)zes +(c—(a+b+1)s)z, —abz = 0. (2.3)

Here the subscript denotes differentiation with respect to s. The general solution
to (2.3) is given by azi(s) + Bz2(s) where z1, 25 are linearly independent. Chazy
finds the solutions to (0.1) in [6] and [7] by treating x = %8 and taking y =
6L log 21 (s).

We form the quotient x = i—f If we take a different linear combination instead
with

Bz1 — 629 5—5% B —dx

i = = %o = y
—az1 + 722 —a+3 —a+yx

z

then we find

ar +

o345
In other words, if we restrict to «, 3, v, § such that ad — 8y = 1, then x = ¢g- & and
T = (g7')-a for g € SLy. Hence SLy equivalent solutions to Chazy’s equation are
determined by the quotient i—f, and thus are completely determined by the Schwarz
function s. Every distinct Schwarz function therefore gives rise to SLo equivalent
22

solutions as in Definition 1.5. We will henceforth just consider the quotient x = =

in our computations, modulo constants that agree with the expression (2.2).

Our goal now is to present the various (z(s),y(s)), parametrised by the distinct
Schwarz functions s that are found using the general method to solve Chazy’s
equation [1], [2]. Let us denote

1d s’

O =——1

! 2dx Ogs(s—l)’
1d s’

0= =% 5

2 2 dx 0g571,
1d s

Q3 = ———log —.

3 2 dx Ogs

Each of these functions satisfies the generalised Darboux-Halphen system ([1], [2]).
We have the following

Proposition 2.2. The function y = —2(Q1+Q2+Q3) solves (0.1) when («, 8,7) =
(%, %, %) (%, %, %) and its cyclic permutations. In a similar way, we find that
y = —Q1 —2Qy — 3Q3 solves (0.1) when (o, B,7) = (3, 3. 3), (3, 2.5) or (3,3, 2).

%>
Also, y = —4Q1 — Q3 — Q3 solves (0.1) when (o, B,7) = (£, +,7) or (3,4, 7)-
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Proof. For each of these combinations of y, we substitute it into equation (0.1)
and using that s satisfies (2.1), we can solve for (a, 8,7) in terms of k for each of
the combinations up to a permutation of the entries. O

Each of these values of (a,f,7) determines the corresponding Schwarz triangle
function and the values of (a,b,¢) in (2.2). In the next four sections we compute
the Schwarz triangle functions that arise in the cases where k = 2, k = %, k=3
and k = %

3. Generalised Chazy Equation with k£ = 2 and its Schwarz Functions

We first give the general solution to equation (0.1) for & = 2 and list the Schwarz
functions that solve the equation in Table 1. The general solution to equation (0.1)
for k = 2 has already been observed by Chazy in pages 346-347 of [7].

Theorem 3.1 ([7], p. 346-347). The general solution to the generalized Chazy
equation with k = 2 over the Riemann surface P! = C U {oo} is given by

y(m)=—2( SRR - )

xr — T Xr — X9 Tr — T3

and depends on 3 arbitrary (not necessarily distinct) points x1, x2, x3 on the Rie-
mann surface.

Proof. We make the following observation over the complex plane C. Under the
substitution y = %f/ for f non-zero, the generalised Chazy equation with k = 2 is
equivalent to the linear 4th order ODE f”"” = 0. The solution to f”” = 0 is given
by the cubic polynomial f = az3+ 3bxz? 4 6cx + d and therefore the general solution
to the k = 2 Chazy equation over C is given by its logarithmic derivative

6ax? + 12bz + 12¢
" axd + 3ba2 + 6cx + d
where a, b, ¢, d are constants of integration. For a # 0, we can factorize f =
a(x — x1)(z — x2)(x — z3) over C, and we obtain y = —2 ( L4t 4 1 )

r—x1 r—I2 r—xI3

y:

The general solution for a # 0 therefore depends on three arbitrary points on
C. If we include the point at infinity, we allow solutions with a = 0 of the form

y=-2(+ ) 2

From Proposition 2.2, when k& = 2 the combination y = —2(2; + Q2 + Q3)
that gives a solution to (0.1) occurs when (o, 8,7) = (1,1,1) or (1,4,%). The
combination y = —Q; — 2Qy — 323 that gives a solution to (0.1) occurs when
(o, B,y) = (%, %, %), (%717 %) or (%, %, %) The combination y = —4€; — Qs — Q3
that gives a solution to (0.1) occurs when (o, 3,7) = (2,1, 1) or (3,3, 3).

For each of these values of (a,3,7) we find (a,b,c) = (3(1—a—58—-7),3(1 +
a+ f—7),1 —p) and the corresponding parameterisation of = given by the ratio
of linearly independent solutions to (2.3). Furthermore, for each of these values of
(a,b,c), we can invert the map (2.2) given by
_oFila—cH+1b—c+1;2—¢5) |
B 2Fi(a,b;¢;s) ’

C
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to determine s as a function of . We then use this function s to determine y(x)
through the above formulas.

We list the Schwarz triangle functions that show up in the solutions to the
generalised Chazy equation with parameter kK = 2 in Table 1. We have the following

Theorem 3.2. The first column in Table 1 below gives the values (o, B,7) of the
Schwarz triangle functions s(c, B,7,t) that solve the generalised Chazy equation
with parameter k = 2. The second column gives the expression for x(s) using (2.2)
and the third column inverts to find s(x). The fourth column gives y(x) from the
corresponding s(x).

[ (a,8,7) ] (s) \ s(z) \ y(z)
(1,1,1) = w1 —%—sh
1.1 1 s 3 z> 2 2
( ’ 3 §) 1—s x3+1 T4l zHw | ztw?
1
111 2 (1-r\3 162 62>
(3:5:3) 25 ( - @ — 55
and s =1—r12
I 1 1 2 4 2 2 2
(3,1.3) = 2 L — aiop —r T 73 T
‘ o . ' 1 Ny
(%, %, %) QL% (i—;:) ’ (gf—:) Roots of the quartic polynomial —% (%) ’ =
and s =1 —1? (3 — %) r* + (8% + 4)r® x(r—1)(r+3)?
3Y,.2 327 _ _ 1222
+(9 — 182%)r? + 2723 — 3 =0 = —537
11 s(1—s) 1 1 2 16
(2’ 2 5) 1—2s 5(1 :t /43:2_;’_1) —z 41211
21 1 3 sin(r) 1 9(4z>—3) 2 16
Y| i ) T

and s = sin®*(3r)

TABLE 1. Schwarz functions for k£ = 2

In the first column of Table 1, the values (a, 8,7) give the angles (am, B, y7)
of the spherical triangle. In the second column of Table 1 we find z(s) using (2.2).
The series expansion of z(s) around a regular neighbourhood can be computed and
can be checked to see if it agrees with entries in Table 1. In the third column,
we invert the second column to present the Schwarz function, with a branch cut
chosen for the functions in the last three rows. The entry in the third column of
the fifth row requires the solution of a quartic polynomial determined by z(r) on
the second column. This same Schwarz function will show up again in the solutions
to the k = % equation. Finally in the last column we present y(z) as determined
by the formulas for s(x) in the third column. Here w = e*3" that appears in the
entry in the second row denotes the cube root of unity. The formulas that give y
are discussed and presented in [20].

Up to fractional linear transformations, the identity map = = s is given by
s(1,1,1,2). This function appears in the first row of Table 1. The upper half plane
is mapped to the hemisphere of S? bound by a great circle and the vertices of the
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triangle are three points lying on the great circle. Geometrically speaking then the
spherical triangles make sense only when (o + 8 + v)7m < 3w. The occurrence of
angles adding up to greater than 37 requires us to think of “triangles” overlapping
onto itself (or a branched cover or folded triangle) to realise such exaggeratedly
large angles.

The function appearing in the third row of Table 1 given by s(%, %, %, x) appears
in Schwarz’s list ([21] p. 323) and has dihedral symmetry.

We shall explain how the entry in the 5th row of the last column is obtained.
The entry finds the solution y of equation (0.1) with parameter k = 2 as a function

of x when z is the inversion of the Schwarz triangle function 8(%7 %7 %7 x).
Proposition 3.3. When s = s(%7 %, %, x), the solution to (0.1) with k = 2 is given
by
d N3 12 2
Y= log (') =— x

_a 32(5—1)% N 223 — 17

Proof. From the parametrisation of x given by

L (1=r\P(34r
95 \ 147 3—7r
with s = 1 — 72, we obtain
4572 1
8 e _dr=—d
3(r—320r—-10s(r+1)s r

The corresponding formula for y that solves (0.1) then gives

(—2r'r)3

d (s’)3 d
Y 1 2 3 og r 0og (1 _ 7'2)2(—7“2)%

dx s2(s — 1)% dr

8 r
2z 2
31 (1=r\%/3+7\" (r=3>r+1)
_42§<1+r) <3—7‘> r3
__§m2(7"_3)3(7"+1)
4 r3 '
From the formula for x, we find
1 (r=3)3r+1)
223 —1 1673
and therefore
_ 1222
y__2x3—1'

]

The maps between the Schwarz functions for the & = 2 case are presented in
Figure 1. We use the notation adopted in [22], where the number over the arrow
denotes the degree of the algebraic transformation. These transformations are
classified in [22].
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QO

FIGURE 1. Mapping of Schwarz functions for k = 2

4. Generalised Chazy Equation with k = % and its Schwarz Functions

In this section we determine the Schwarz functions for the values («, 8,7) that

show up in the solutions to the k = % equation. When k = %, the combination

y = —2(Q + Q2+ Q3) gives a solution to (0.1) when (o, 8,7) = (3,3,3) or (%7 §73).
The combination y = —Q; — 2Qs — 383 gives a solution to (0.1) when (o, 8,7) =
(3,4,2), (3,3, 4) or (2,4,9). The combination y = —4€; — — Q3 gives a solution
to (0.1) when (o, 8,7) = (6,3,3) or (3,3, 3).

For each of these Schwarz triangle functions, we present the flat or symmetric
(2,3, 5)-distribution that it determines by computing the anti-derivative

F(z) = //e%fy(“’)dxdmdw.

The values for F'(z) are presented in the 3rd column of Table 2. In the table we
take the constants of integration appearing in each integral of F(z) to be 0.

[ (@,8,7) | x(s) or x(r) | F(x(s)) or F(z(r)) |
1.s—2 .3 1
(3,3,3) 225-1% S+ 3@ D
2
11 1 ( s+2 1 53
(3:33) 2 (25+1)83 25+1
1 1 2
(3,1 1) _ 1 (1=r)® (143r (r+1)3 (r=1)3
27312 23 \1+r 1—3r 3r—1
and s =1 —1r?
3 1 9s%+4s—8 s—2
(273’ 2) 2 s 16 s—1
1 . 1
(3,1,9) | =275 (=£3) (1z)° 3rt—8ri454r2-81 | (r41)3% (r+3)(r?=9)(r—1)
27372 r—3 1+7r 3r44-8r34+54r2—81 r—1 3r44-8r3+54r2—81
and s =1 — 72
(6,3,3) (s(1-5)) % (25-1) !
1202 12857 —25653+ 14452 —165—1 1285725653+ 14452 —165—1
(g 3 §) 81 sin(8r)—2sin(4r) 1
37272 64 cos(8r)+2 cos(4r) cos(8r)+2 cos(4r)
and s = sin?(3r)

TABLE 2. Parametrisations for k = 2

We state the theorems concerning Table 2 as below.
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Theorem 4.1. The first column in Table 2 gives the values (o, 8,7) of the Schwarz
triangle functions that solve the generalised Chazy equation with parameter k = %
The second column gives the expression for x(s) using (2.2) and the third column

finds F(x(s)).

Inverting the function for s in terms of x requires the solution of a quartic
equation in s except for two cases in the second and third last rows of Table 2,
where the degrees of the polynomials involved are larger. We present F'(x) instead
of the solutions y(z) because the results take precedence in the theory of (2,3,5)-
distributions.

There is a Legendre duality discovered in [3] that takes equation (1.3) to (0.2)
given by the following:

(v, F)w~ (t,H) = (F',aF' — F).
We find that H as a function of ¢ solves equation (0.2)
10(HII)SH(6) _ 70(H//)2H(5)H(5) o 49(H//)2(H(4))2
+280H"(H® Y2 H®W —175(H®) =0 (4.1)
whenever equation (1.3) holds. The prime in equation (4.1) refers to differentiation
with respect to t. Equation (1.3) can be reduced to the generalised Chazy equation
with k = % while equation (4.1) can be reduced to the generalised Chazy equation

with k = % Since the entries in the last column of Table 2 give solutions to equation
(1.3), we obtain

Theorem 4.2. Each row of Table 2 determines a (2,3,5)-distribution Dp(y) with
split Go symmetry.

To give an example of the Legendre transform, we consider (z(s), F(z(s)))
parametrised by s(3,3,3,z) given in the first row of Table 2. Eliminating the
parameter s between x and F gives an algebraic curve Pj(x, F) = 0 which is an
integral curve of a solution to equation (1.3). For the family of curves parametrised

by
(e, F) = (H(*ml—n))

where ¢ is constant, we find that

1
Py(x, F) =3F* + 2¢(8x — 1)F? — ¢? <Q4x + 25> P2
1 13
-9c* (436 + 2) F-c (64:1:2 + 10z + 16) =0.

The Legendre dual (z, F) — (t,H) is found by determining ¢t = F’ and H =
xF" — F. This gives

n=(5(-) (o dese))

The parameter s can again be eliminated to give the integral curves of the solutions
to equation (4.1).
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2
(3:3:3) = (5:3:3) <= (5:5:3)
RN
3 3
(3.3.3) —> (3.3.3) (§,%,%)

FIGURE 2. Mapping of Schwarz functions for k = %

We also see that the Schwarz triangle function s(%, ;’, 3,:1:) appears in both the
solutions to the k = 2 generalised Chazy equation and the k = % equation. This
gives an intriguing relationship between the solutions to (0.1) for k = 2 and k = 2

3
determined by this Schwarz function.

Proposition 4.3. Let s = (2,1 1 ). We find

213792
d (8,)3
= 71 _—
e B )i
is a solution to (0.1) with k = 2 while
d (s")3 d
=—log—————F— = —1 -1
Ear R A R

. . . o 2
is a solution to (0.1) with k = 5.

The Schwarz functions for the k = % equation are determined by the following
pull-back maps in Figure 2, with the same notation from [22].

The domain of the spherical triangle corresponding to the Schwarz function
s(%, 3 2, x) has angles ( , 37r 77) This triangle is the complement of the triangle
with angles (37,27, i7) in a hemlsphere with the edge of the hermsphere lying
along the §7r and 27r edge of the triangle. Reflecting along the %71’, 57 edge gives
us the “triangle” Wlth angles (7, £m,3m) branched over the vertex with angle
3m. A reflection instead along the equatorial %7‘(’, %’/T edge gives the triangle with
angles (37
the sphere.

, gw, gﬂ') which is also the complement of the (% , 27r L7) triangle in

5. Generalised Chazy Equation with k = 3 and its Schwarz Functions

In this section we determine the Schwarz triangle functions that solve equation
(0.1) with &k = 3. We let t denote now the independent variable. This is to
distinguish the independent variable when we compute the Legendre dual curves
later on.

Theorem 5.1. The general solution to the generalised Chazy equation with k = 3
over the Riemann surface P* = C U {co} is given by

3/ 1 1 1 1
t)=—= 5.1
y(t) 2(t—t1+t—t2+t—t3+t—t4) (5.1)
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where the 4 points t1, ta, t3 t4 on the Riemann surface are subject to the constraint
Q that 12ae — 3bd + ¢ = 0 where

a(t —t)(t —to)(t — t3)(t — tq) = at* + bt + ct? + dt + e.

Proof. Under the substitution y = %JZN for f non-zero, the generalised Chazy
equation with k& = 3 is equivalent to the nonlinear 4th order ODE 2" f —2f"" f' +
(f")? = 0. Differentiating this ODE gives the linear ODE f"”” = 0 whose solutions
are given by f = at* + bt? + ct? + dt + e. Substituting this back into the 4th order
ODE, the coefficients are subject to the constraint 12ae —3bd+c? = 0 and therefore
the general solution to the k£ = 3 Chazy equation over C is given by (5.1). O

This general solution has been mentioned in [7] and [10]. For this parameter,
Chazy ([7] p. 347) makes the observation that assuming the four roots are distinct,
the roots t1, to, t3 and t4 can be chosen to lie on the sommets of the tétraédre
régulier. The condition Q defines a projective variety in P2. When one of the
points is t4 = 0o, the condition on the remaining three roots to be a solution is that
they must lie on the conic C = {t1,t,t3 € C|t3 + 13 + 13 — t1ta — t1t3 — tats = 0}.

In this situation,
YA S B
y= t—t; t—ta t—tg

satisfies the k = 2 equation while

3 1 N 1 N 1
L t—ts

satisfies the k = 3 equation. We have

Proposition 5.2. The inclusion of varieties
C——>Q

N N
P? — > P?
corresponds to the following isomorphism

Solutions to k = 3 equation | . | Solutions to k = 2 equation
with one pole at {oo} | with poles in C

where the isomorphism is given by a constant rescaling.

When k = 3, the combination y = —2(; + Qs + Q3) gives a solution to (0.1)
when (o, 3,7) = (3,2,2) or (%, 1, 3). The combination y = —Q — 20 — 3Q; gives
a solution to (0.1) when (o, 8,7) = (3,3, 3): (3, 3, 3) or (3, 3,1). The combination
y = —4Q; — Qy — Q3 gives a solution to (0.1) when (o, 8,7) = (3,3, 3) or (3,1, 1
We present the Schwarz functions when k& = 3 in Table 3. Observe that 5(1,
appears both in the £ = 2 and k& = 3 equations. The Schwarz function s(%
appears twice here, giving the two formulas for y with

d (s')3

1 PR S
at B 52(s - 1)

3:3)-
y 551
1)

COM—'OJM—“‘
COM—'OJM—‘“

d (51)3
and y = — log ————
y= Y de¢ & s2(s—1)2



SCHWARZ TRIANGLE FUNCTIONS AND DUALITY 195

both satisfying the & = 3 Chazy equation. The functions here that appear in

Schwarz’s list are s(1,%,%,¢) and s(2,%,1,¢), both of which possess tetrahedral
symmetry. Again w = e’ denotes the cube root of unity.

We have the following

Theorem 5.3. The first column in Table 3 below gives the values (o, B,7) of the
Schwarz triangle functions that solve the generalised Chazy equation with parameter
k = 3. The second column gives the expression for t(s) using (2.2) and the third
column inverts to find s(t). The fourth column finds y(t) from the corresponding

[ (a,8,7) ] t(s) \ s(t) \ y(t) \
2 2 2 Fi(3,8:5:8) 2 —2 92, _ _ s(t)?
(5:53) | sRa —1aes® | 1275w = RSO Sami as yl(t)
where I(t) = s(35,3,5,t) | for 5(3 ;51 551)
(2,11 2F1(3.5:%59) . V32 (VBF2+3v2)% (VB F2-V2) 9 ¢
37373 2F1(=5.5:5:9) 32 (Vt3+2)3 2¢3+2
d 6(t>—4)
ana —3us—1e)
11 1 2P ({5,55538) 1 t2(t2—64)3 9 2
(57575) SF (-5, 52 ” T 512(:318)3 T2%18
(g 1 ;) 2F1(55.3:%59) . s 1 £3@27tt+e4)® _ 6 (27t3+16
37372 2P (55, 533:9) (4s—1)2 = 512 (27t3—-8)3 t \ 27t3+64
11 1 3 9 2
(3:3:1) 53 ¢ T2
7 _1.4.
(3.4.4) | 2reshss | 1280 =4s()(1 - (1) | Same as y(t)
2 1(*5;57518)
where I(t) = s(, %, 3,t) | for s(3,%,3.1)

TABLE 3. Parametrisations for k = 3

Let us see how some of the entries in Table 3 are derived. Consider for exam-
ple the entry for s(¢) in the 3rd column when s is the Schwarz triangle function

52,3, 3.0).
Proposition 5.4. When s = s(%, %, %, t), we have
s 1 3273 4 64)3

(ds—1)3 ~ 512 (273 —38)3 (5:2)

as written in the fourth row of Table 3.

Proof. This is obtained from considering the pull back map (3,3, 3) & (2,5.3)

in Figure 3. This corresponds to the cubic transformation given in formula (121)
of [15]. For o = —75, we have

5 12 112 27
A2 1—ds)ipFy (——, 22, =10
21(12’ 13 ) ( 8)21( 12’4’3’(451)3)

while for o« = i we have
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Together this gives
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QFI(TE’Q;%’S) sé 771 < 27s )ilB 2F1(1772ai7%7(482181)3)
2F1(%7_i3%35> 3 (45—1)3 2F1( % i;gy(ﬁﬁ)s)
The formula for s(%, %, 3,t) in the third row of Table 3 gives
27s (=317 ((=3t)° — 64)°
(4s —1)3 512 ((—3t)3 +8)3°
which simplifies to
s _ 1 321t +64)°
(45 —1)3 512 (2713 — 8)3
O
The Schwarz triangle function s(% %,3,t) gives the following expression for y(t).
Proposition 5.5. When s = s (2, %, 3,t), the solution to (0.1) with k = 3 is given
by
d (s")3 6 27t3 + 16
y= &log = T = Ty
32(3—]_)2 27t3 + 64
Proof. From (5.2), we obtain
s§ 127 +64)
45 —1 8 (2713 —8) °
Let @ denote the right hand side term of the above expression. We have
1 8s+1 1 8s+1
—————ds=—-———Qds = Q'dt
35%(43—1)2 s 35(43—1)Q s=Qdt,
or alternatively,
o _gss D@
8s+1 @
The formula for y gives
d (s/)?)
:—1 R ——
Yoa i s - 13
(4s—1) Q'
1 (_3g8:+1 %)
—lo ;
Tdt T G (s— 1)t
, _35(45—1) 3 ,
N (45—1)(1 8s+1 +3310 Q'
TUVQ 8+ ds PTG on: | Cat*Q
3 Q' 6453 — 485 + 665 — 1 d Q'
=-—= +3—log —.
2Q (8s+1)%(s—1) dt Q

Therefore we have
2

Y
3Q' dt

QI
*Q

_ 6453 — 4852 + 665 — 1
85+ 1)2(s—1)
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3 3 3
Using the fact that T 1)3 = S%t (<§77;_+86§? from Proposition 5.4, we eliminate s

appearing in both this equation and (5.3) to obtain

6 (27t3 416
v=—\3p 1)

27t3 4- 64
O
1 3
If we make the substitution ¢t = _04j:23 and s = —6—14% into (5.2), we get
an identity. This alternative parametrisation comes from the mapping (37 3 é) &

(2,1,2) in Figure 3 and o agrees with 3(3, 2

of t. From this, we find that (¢,ys) given by

2,t) up to a constant reparametrisation

Wl

N
o +2
3 (0 +2)(0? + 602 — 960 + 8)
Ys = —35

2 o3 (0 +8)(0 —1)2
_ . 3(, .8 9 8 \__3 11083
2t o—1 (oc—12 o+8) 2t \ 1-27

solves the k = 3 equation while (¢,y 3 ) given by

ol

o g
o+2
9 (0 +2)(c —10)o3
BT ooy

9,8 9 3,9 8
4t -1 (e-12) 2" Ho18

solves the k = % equation. The latter solution agrees with the solution given in

Theorem 6.6, which means that we have reparametrised the solution for y(t) given
by s(g, :1,), ;,t) to those given in the subsequent Theorem 6.6.

For brevity we denote I(t) = s(3,%,2,¢), J(t) = s(3,%,4,t) and K(t) =
s(%, %, %,t). Using quadratic transformations (similar to those given in the next

section), we find that I(25¢) = 4J(t)(1 — J(t)) and I(—2" 3w?t) = % where

-
w=e3"",

Proposition 5.6. The functions I, J, K determine the same solution to the gen-
eralised Chazy equation for k = 3.

Proof. We have 1(251) = 4J(t)(1 — J(1)) and I(~23w?) = ;A" A compu-
tation shows that

(I/)3 (J/)B (K/)3
- - = C1—5 .
F—-1nF JEU-1nF KK 17

for some possible complex constants ¢; and cy. By choosing the same logarithmic
branch, the logarithmic derivatives of these three functions give the same solution
to the k = 3 Chazy equation. O
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6. Generalised Chazy Equation with k = % and its Schwarz Functions

In this section we present the Schwarz triangle functions that show up in the

solutions to the k = % equation. When k = %, the combination y = —2(Q;4+Q2+Q3)

444)01"(411

gives a solution to (0.1) when (o, 8,7) = (5,3, 3 3,3,3). The combination

y = —Q1 — 20y — 3Q3 gives a solution to (0.1) when (¢, 8,7) = (%, %, %), (%, %, %)
or (£,1,2). The combination y = —4Q; — Qs — Q3 gives a solution to (0.1) when
(@, 8,7) = (5,3, 3) or (3,3, 3)-

The Schwarz triangle functions that appear can be grouped into those that have
already shown up in the the solutions to the k = 3 equation and those that have
not. The additional ones are presented in Table 4. The Schwarz triangle func-

tions I, J and K corresponding to the spherical triangles with angles (%7?, %7‘(‘, %77),

(%71’, %71’, %w) and (%W, %w, %w) respectively have already appeared in the solutions
to the k& = 3 generalised Chazy equation and they solve the k = % equation (see

the previous section) by deforming the k& = 3 solutions along some function of K
(or I, J).
Proposition 6.1. Let K(t) = s(%, %, %,t). We have
d (K/)S d (K/)S
—log ———, —log————= an 5, 1.3
dt " K3(K—-1) dt " K(K-1)2 dt " K3(K-1)>
all satisfying the generalised Chazy equation with k = %
Proof. This comes from considering the different combinations y = —4€; —Q5—Q3,
y=—01 —4Q — Q3 and y = —Qy — Qg — 4Q3, discussed in [20]. In all three cases
the function K remains the same since its triangular domain has the property of
being equilateral. O

\3
Let us denote y3 = % log % This is the solution to the & = 3 equation in

the previous section.

Corollary 6.2. The functions yg—i—% log %, yg—i—% log \/% and yg—ﬁ—% log \/ﬁ
are all solutions to the generalised Chazy equation with parameter k = %
In the above expressions, K can be substituted for I or J as well.
The remaining Schwarz functions that have not shown up in the £ = 3 case
are given by s(2,2,1¢), s(2,2,24), s(2,2,2 ¢) and s(2,1,2,¢). We discuss

313592 39393 397323 393
s(%, %,2,t) in Theorem 6.6. Again for brevity let us denote L(t) = s(%, % %7 ),
M(t) = s(3,3.5.t) and N(t) = s(,2,2,t). The relationship between L, M and

N is presented in Table 4. We determine the relationship between L, M and N in
the following fashion, using only quadratic transformations between hypergeometric
functions. The inversion formula for L gives

1 5.5.
HIL) = 2F1(_T717§7L)L%
( ) 3 7.1,
2F1 (=71, 7555: L)
We find
P56, §i59) 3 pg2filom 3igide(l - D 451 — )
2Fi(=3, 55 %59) 2F1 (=%, {5 5:4s(1 — 9))
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The left hand side is the inversion formula for N(¢), while the right hand side is
2-5¢(4N(1 — N)) and so

2

o (3,5 %s) 4 2F1(*%7%5§’4(f—1)) s 3

S ss = 25w 3 7.1, <2 )
2F1(_§7_§7_§7S) 2F1(_Zaﬁ;§74(58_1)) 4(8_1)

where w = 3™, The left hand side is the inversion formula for M (t), while the
right hand side is 2&0%(#:)) and so

L(275wt) =
We have the following

Theorem 6.3. Along with the Schwarz triangle functions I(t), J(t) and K (t) with
values (o, B,7) = (%, %, %), (%, %, %) and (%, %, %) respectively, the first column in
Table 4 below gives the values («, 8,7) of the Schwarz triangle functions that solve
the generalised Chazy equation with parameter k = 3. The second column gives the

2
expression for t(s) using (2.2) and the third column relates their inverses s(t).

[ (@,8,7) | t(s) \ s(t) |
144 F(—1 7.7 1 4 _ M(#)?
(5:3:3) | sheT ot TS L(272wt) = 5750
421 Fi(—15.5:558) 2
(5:53) | SmFEins L(t)
Fi(—2 4.5.6) 2 4
(5:2.3) | msisst | Leiy =aN@a - NE)
1
(%7 %7 2) iiz Roots of the cubic polynomial
4652+ (12— 5)s+8=0

TABLE 4. Parametrisations for k = %

We find that each of the Schwarz triangle functions L(t), M(t) and N(¢) gives
the same solution to (0.1) with k = 3.
Proposition 6.4. The functions L, M, N determine the same solution to the
generalised Chazy equation with k = %

Proof. Similar to Proposition 5.6, a computation shows that

(L) (M) (N')?

LEL-1F “MEM—-12 NI -1)3

again for some possible complex constants c3 and c4. By taking the same loga-
rithmic branch, the logarithmic derivatives of these three functions give the same
solution to the k = % Chazy equation. (|
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We are now left with the problem of determining what
d (LI)3

—log ——————

dt % L3(L—-1)2

is. We shall show that this can be reparametrised to give the solution (6.2) below.

y(t) =

Proposition 6.5. Let 7 = 5(3, 3,2, %) and L = s(2,2, 1 ). We have

37372
L% _4 1—7
AL—1 3\1487)"

Proof. We first apply the cubic transformation (3,2, 1) & (5,2,1). Let u =

% We find —“5 = %. The formulas (121) of [15] give

1 111 27L
2F1< 3.7, L):(1—4L)32F1< 2L )

ol

(6.1)

1123 1123 (4L — 1)3
foroz:—i and
1 55 5 5 35 27L
Fi|——,-;=;L|=(0—-4L) 1 | — —_—
? 1( 12'4°3 ) ( N 1( RER (4L—1)3)
for a = % Together they give the inversion formula for L
u 2
_ 2R 12»451?35L)L% 1 2R3 5 %) ( u )3
2F1( 471273aL) 92F1( i%%i) I—u
Now we apply the degree 4 transformation (i,i,%)é(é,d, 2). Letv—%.

We find using equation (127) of [15] that the same parameter a = —1 gives

1 11 _3 21
2F1 (_4712a 37U) - (1 +87—) 42-F1 (_17_37 37T>

anda:%gives
3 5 5 5 5 .9
21 (4 123 )(1+8T)42F1 (3’2’3’7)'

We therefore obtain

2F1 (3,5 20) Wi 2F1 (3,23 7)(1+87)% Ar3(1—7)
2F1 (=55 155 55 0) 2Fi(=1,—3 5;7)(1+87)7% 1+8r
1673
1427
Equating v = %5, we obtain
64r(1—7)%  27L

(1487)3 (4L —1)3

and we find that the parameters are related by

9 _ i
16 (1+27)
where the right hand side is the inverse 7 = 5(3, 3,2, (f—é). O
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We shall now use L(t) to deduce the solution y(t) to the generalised Chazy

equation with parameter k = 3. Let R(7(t)) = 51 73 denote the right hand

31187

side of (6.1). From the above Proposition 6.5 we have t = % and
L LAL-1) R
8L+1 R’

Analogous to Proposition 5.5, we find that
2R 34 o, B _ 64L° —48L° + 661 — 1
s \Y "% ®R)T T BLr12(L 1)

Eliminating L between this equation and (6.1) gives us the solution

[ 1675 81(1+ 27)(107 —1)
(ty) = (9(1 +27)°64 73 (r —1)2 ) ‘ (6.2)

Eliminating the parameter 7 gives us an integral curve to the solution of (0.1) with
k = 2. Using the formula H = [ [ e3 Jvdtdtdt, we further obtain

(10 = 1673 ,1024 5
9(1+27)" 81 1427

The corresponding dual curve found by (¢, H) — (z, F) = (H',tH'—H) is parametrised

by
32047 — 1) 512 73
2, F) = " = :
( ) (97’3(7’—1) 81 7'—1)

We now determine the solution (¢, H) to (4.1) when it is parametrised by the

Schwarz function 5(3, 3,2, t).

Theorem 6.6. For the Schwarz function s(%, 1.2 t), the parametrisation for t is

39
found to be given by
_ 253
~ (s+2)
while the formula for H(t(s)) is found to be given by
45%
H -
(ts)) =

Proof. For the values of (a, 8,7) = (3, 3,2), we find (a,b,¢) = (1, — 3, g) The
general solution to ugss + 4V( s)u = 0 with these corresponding values is given by
u=fBs3 +as+2). Let uy = (s +2) and up = 253. Then

253 53
S (542 2R(-1 -5 5:8)
agrees with the formula given by (2.2) and we find that
N3 _
Y= d log (s") _ 9(s+2)(s 10)3%

dt 32(8—1)% 8 (s—1)2
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Also s(t) is given by the root of the cubic equation
8
s° + 65 + (12—tg>s+8=0.
We find that
4 s—1

dt= =572 4
3 (s+2)2s3

2
H://egfydtdtdtz— ds7
s+ 2

Eliminating the variable s in (¢(s), y(t(s))), we obtain an algebraic curve C(t,y)
given by

C(t,y) = t2(3t — 2)%(9t> + 6t + 4)*y> + 18¢(3t — 2)(27t3 — 2)(9t* + 6t + 4)y>
+ 324(243t% — 45¢° + 1)y + 1458t>(108t> — 5) = 0,

and therefore

O

3

which gives an integral curve of the solution to (0.1) with £ = 5. We can also

eliminate s in (¢(s), H(t(s))) to get
H? —16t°> — 8Ht = 0.

This gives an integral curve of the solution to Noth’s equation (4.1). Using the
formula (z, F) = (H',tH' — H), we find that the dual curve is given by

8—4 1 28%
F) = — 3, — .
(@, F) < sls’sl)

To summarise the results of Section 6, we have the following

Theorem 6.7. The functions I, J K give rise to the curve (t, H) parametrised

(up to constants) by
253 453
tHy=—s —— 6.3
(¢ H) (5—!—27 5—|—2> (6:3)

where s = 5(%, %, 2,t) and the dual curve

8—4 1 28%
= |- 3 25°
(@, F) ( s—1° ’sl)

determines a flat (2,3,5)-distribution Dp(yy. The functions L, M N give rise to
the curve (t, H) parametrised (up to constants) by

(t,H) = ﬁ)_ﬁ
1+2s" 1+2s

where this is obtained by inverting s — % in (6.3). The dual curve given by

4s—1 2s3
('TvF): — 1 ,
s3(s—1) 1—s
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also determines a flat (2,3, 5)-distribution Dp(g).

Figure 3 shows the transformation maps between the Schwarz triangle functions
that show up in the k = % and k = 3 solutions. The Schwarz functions s(%7 %7 % x),
s(%,%,%,x) and 5(3, é, é,x) appear in the solutions to the k = 3 and k = %
equations. The three diagrams 1, 2 and 3 can be combined at the nodes labelled

by (3,3,1) and (3.3, 3)-

Wl
SN—
J/w
—~
ol
w\m % @i — Wl
ol
SN—"

.J>
—
ol
w\»—'
\_/

4
3

FiGURE 3. Mapping of Schwarz functions for k = % and k=3

We end by discussing the shapes of the spherical triangles that show up in the k =

3 and k = 3 cases. The spherical triangle with angles (%w, %77, %71') corresponding

2

to 3(2, §, g, ) is given by the following. Divide the hemisphere equally into three
s

lunes, with each end having angle 3. The domain for the (7 , 37r 271) triangle

is the complement of the fundamental domain of the (3, 37r 77) trlangle with

tetrahedral symmetry in this lune. Eight of these trlangles tile the whole sphere.

The triangle with angles (7 , gﬂ', gﬂ') is generated by reflecting this domain along
the long edge meeting the right angle, while the triangle with angles ( T, ;’ﬂ', gﬂ')
is generated by reflection along the short edge meeting the right angle.

When k = %, the triangle with angles (%777 %w, gﬂ) also show up. This is
the complement of the (3w, £, 27) triangle in the hemisphere with the edge
between the %77 and %7‘( angles lying along the equator. The other triangle with
angles (%7‘(‘, %ﬂ', %71') is generated by reflecting along the long edge meeting the right
angle (or equivalently, the equator). This is also the complement of the equilateral
triangle with angles (%w, %71’, %’/T) in the whole sphere. Reflecting along the short
edge meeting the right angle gives the “triangle” with angles (%7‘[‘, %ﬂ, %7‘(‘), which

; 8
overlaps at the vertex with angle .

Appendix A. Duality of Generalised Chazy Equations

There is a Legendre duality [3] that takes the generalised Chazy equation with
parameter k = 2 to its dual with parameter &k = 3. This is explained in [3] and
[20]. We show that the gencralised Chazy equation that is Legendre dual to another
generalised Chazy equation has parameter k£ given by either :I:% or :i:%.
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Proposition A.1. Let m = ﬁ in equation (0.1). Any generalised Chazy equa-
tion can be put into the form

P =204+ 2) 2 " 4 3(—120m + £ — 1) f2(f)? (A1)
+12(Pm + 60m + 1) f(f)2f" — (3m + 120°m + 36¢m + £+ 6)(f")* =0

using the substitution y = €f7/ for £ non-zero.

To pass to the dual equation, we use the substitution f = % and % = .4 to

determine f, f/, f”, f" and " in terms of h and its derivatives with respect to ¢
and we obtain

B3R 4 (20 — 11)W2W' B + (366m — 3¢ — T)h?(h'")?
+ (120%m — 1440m — 2¢ + 59)h(R)*h"
+ (63m — 240%m + 1440m + 40 — 48)(W)* = 0.
Hence any equation of the form
B3+ (25 — 11)R2W' K" + (3650 — 35 — T)h*(h")?
+ (125%n — 1445n — 25 + 59)h(R))?h"
+ (530 — 245%n + 1445n + 45 — 48)(K")* =0

is a Chazy equation only if the coefficients agree with that in equation (A.1). In
this case, n and m is determined completely and is given by either % or %. This
gives k = i% or k= i%.
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