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Abstract. Non extreme points of compact, convex integral families of ana-
lytic functions are investigated. Knowledge about extreme points provides
a valuable tool in the optimization of linear extremal problems. The func-
tions studied are determined by a 2-parameter collection of kernel functions
integrated against measures on the torus. Families from classical geometric
function theory such as the closed convex hull of the derivatives of normalized
close-to-convex functions, the ratio of starlike functions of different orders, as
well as many others are included. However for these families of analytic func-
tions, identifying “all” the extreme points remains a difficult challenge except
in some special cases. Aharonov and Friedland [1] identified a band of points
on the unit circle which corresponds to the set of extreme points for these
2-parameter collections of kernel functions. Later this band of extreme points
was further extended by introducing a new technique by Dow and Wilken [3].
On the other hand, a technique to identify a non extreme point was not in-
vestigated much in the past probably because identifying non extreme points
does not directly help solving the optimization of linear extremal problems.
So far only one point on the unit circle has been identified which corresponds
to a non extreme point for a 2-parameter collections of kernel functions. This
leaves a big gap between the band of extreme points and one non extreme

point. The author believes it is worth developing some techniques, and iden-
tifying non extreme points will shed a new light in the exact determination
of the extreme points. The ultimate goal is to identify the point on the unit
circle that separates the band of extreme points from non extreme points. The
main result introduces a new class of non extreme points.

1. Preliminaries and Statement of Main Theorem

Let D and Γ, respectively, denote the open unit disk and the unit circle in the
complex plane C. Let H(D) denote the space of functions analytic in D and let
T = Γ × Γ denote the torus. We investigate non extreme points of the compact
convex families in H(D) defined by, for p, q > 0,

Fp,q =



fµ(z) =

∫

T

(1 − xz)p

(1− yz)q
dµ(x, y)| µ is a probability measure on T



 .

A function f ∈ Fp,q is an extreme point of Fp,q if f = tg + (1 − t)h for some
g, h ∈ Fp,q and 0 < t < 1, then f = g = h. If a function f ∈ Fp,q is not an
extreme point, then it is a non extreme point of Fp,q. For particular choices of the
parameters, Fp,q includes the closed convex hull of the derivatives of the normalized
closed-to-convex functions on D [2], the ratio of starlike functions of different orders
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[1], as well as many other families from classical geometric function theory [4], [5].
In the search for non extreme points of Fp,q, our particular choice of probability
measures in this paper captures the known non extreme points [1] as we expected,
but more excitingly it leads to the existence of, for given p and q, the non extreme
points of Fp,q nearby when p is a positive integer.

Consider the curve Cp = {(1− x)p : |x| = 1} and let Ep denote the closed convex
hull of Cp in C. The following are well-known facts:
(i) If there exists a probability measure µ that is not a unit point mass and

representing a function f(z) = fµ(z), then f is a non extreme point of Fp,q

[2].
(ii) The family Fp,q is closed under rotation. That is, if f is a function in Fp,q and

|u| = 1, then g(z) = f(uz) is also in Fp,q. Thus, any rotation of a non extreme

point is a non extreme point. For a simpler computation, we will show (1−xz)p

(1−z)q

is a non extreme point for some x ∈ Γ.
(iii) (The Product Theorem) Suppose that α > 0 and Fα denotes the set of func-

tions represented by

f(z) =

∫

Γ

1

(1− yz)α
dµ(y)

where µ is a probability measure on the unit circle. If f ∈ Fα, g ∈ Fβ , α > 0
and β > 0, then fg ∈ Fα+β [2].

(iv) For 0 < p ≤ q, (1−xz)p

(1−z)q is a non extreme point of Fp,q when x = 1 by the

Product Theorem. Then by (ii), (1−xz)p

(1−yz)q is a non extreme point of Fp,q when

x = y for 0 < p ≤ q.

(v) If x 6= 1 and (1 − x)p is an extreme point of Ep, then
(1−xz)p

(1−z)q is an extreme

point of Fp,q [1].
(vi) For 0 < p ≤ 1, the curve Cp encloses a convex region and every point on Cp

is an extreme point of Ep. In this case, by (v), the only possible non extreme

point of Fp,q is (1−xz)p

(1−z)q where x = 1.

(vii) For p > 1, as one traverses the curve Cp in either direction starting at 2p

(x = −1) and ending up at the origin (x = 1), there are two distinguished
“turning points”. These turning points occur when |arg(x)| = π(p− 1)/(p+1)
and correspond to the points on Cp where Re(1 − x)p attains its minimum
value. In this case, the convex set Ep is bounded by part of the curve Cp

— the part traversed from one turning point through 2p to the other turning
point — together with the vertical line segment joining the two turning points.
Thus, if p > 1, a point (1 − x)p is an extreme point of Ep if and only if
π(p − 1)/(p+ 1) ≤ |arg(x)| ≤ π. Then by (v), the only possible non extreme

points of Fp,q are (1−xz)p

(1−z)q where 0 ≤ |arg(x)| < π(p− 1)/(p+ 1) [3].

Two fundamental questions arise. The first question is whether (1−xz)p

(1−z)q is a non

extreme point when x = 1 for any p > 0, and q > 0. The second question addresses

the existence of non extreme points (1−xz)p

(1−z)q near x = 1. In this paper, we address

both of these questions for a special case when p = 2, 3, 4, . . . and q ≥ 1. We are
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now ready to state the main result.

Theorem 1.1 (Main Theorem). For p = n = 2, 3, 4, . . . and q ≥ 1, (1−xz)n

(1−z)q is a

non extreme point of Fn,q when x = 1. Moreover, there exists some non extreme

points near x = 1.

In the proof of the existence of non extreme points (1−xz)p

(1−z)q near x = 1, how close

x is to y (in this case, y = 1) plays an important role which you will see towards
the end of the proof.

2. Proof of Main Theorem

We begin the proof of Theorem1.1 by showing (1−xz)n

(1−z)q is a non extreme point of

Fn,q when x = 1.

Remark 2.1. Recall the Fejer kernel

kn(x) = 1 + 2

n−1∑

k=1

n− k

n
cos(kx) =

1

n

[
1− cos(nx)

1− cos(x)

]
.

Note that kn(x) is non-negative and has zeros at x = 2πj
n
, where j = 1, 2, 3, . . .

(n− 1). Let

dλ =

[
1 + 2

n−1∑

k=1

n− k

n
cos(kθ)

]
dθ

2π
.

Then λ is a non-negative measure with total mass of 1 over Γ.

Remark 2.2. By the Product Theorem, for q ≥ 1 there exists a probability measure
ν over the unit circle which is not a unit point mass, and satisfies

1

(1− z)
q−1 =

∫

Γ

1

(1− yz)q
dν(y).

Proof of the first half of Theorem 1.1. Let µ be a product measure µ = λ× ν over
the T where λ and ν are in Remarks 2.1 and 2.2, respectively. Then,

fµ(z) =

∫

T

(1 − xz)n

(1 − yz)q
dµ

=

∫

Γ

∫

Γ

(1− xz)
n

(1− yz)
q dλ(x) × dν(y)

=
1

(1− z)
q−1

∫

Γ

(1− xz)
n
dλ(x)

=
1

(1− z)
q−1

∫ 2π

0

(
1− eiθz

)n
[
1 + 2

n−1∑

k=1

n− k

n
cos (kθ)

]
dθ

2π

=
1

(1− z)
q−1

[
n−1∑

k=0

(−1)k
(n− 1)!

(n− 1− k)!k!
zk

]
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=
1

(1− z)q−1 · (1− z)
n−1

=
(1− (1)z)

n

(1− z)
q .

Therefore by (i), (1−xz)n

(1−z)q is a non extreme point when x = 1. �

Before we prove the second half of Theorem 1.1, that is: for p = n = 2, 3, 4, . . .

and q ≥ 1, there exists some non extreme points (1−xz)p

(1−z)q of Fn,q when x is near 1,

we need to define the following two probability measures; µ1 on Γ× {1} and µ2 on
Γ × (Γ\ {1}). As mentioned in (vii), turning points of Cn occur when |arg (x0)| =
π(n−1)
(n+1) . Without loss of generality, let x0 = eiθ0 , 0 < θ0 < π (because of the

symmetry of Cn, the following argument works for −π < θ0 < 0 similarly). Let α

be an angle such that θ0 < α ≤ π(n−1)
(n+1) , and δeiα , δe−iα be unit point masses at eiα

and e−iα respectively. We now define a probability measure µ1 on Γ× {1} as

µ1 = Rδeiα + (1−R) δe−iα for some 0 < R < 1. (2.1)

Then, ∫

Γ×{1}

(1− x)
n
dµ1 = R

(
1− eiα

)n
+ (1−R)

(
1− e−iα

)n

which is a point on the line segment connecting the two points;
(
1− eiα

)n
and(

1− e−iα
)n

on Cn. We also define

µ2 = λ (x)× ν (y) on Γ× (Γ\ {1}) where
1

(1− z)
q−1 =

∫

Γ

1

(1− yz)
q dν (y) . (2.2)

Again, the existence of such a probability measure ν is guaranteed by (iii). We will
discuss the details about the probability measure λ in the proof below.

Proof of the second half of Theorem 1.1. Let

µ =

{
ǫ · µ1 on Γ× {1}

(1− ǫ) · µ2 on Γ× (Γ\ {1})
(2.3)

for some 0 < ǫ < 1. Then for some x0 near 1,

(1− x0z)
n

(1− z)q
=

∫

T

(1− xz)
n

(1− yz)q
dµ

= ǫ

∫

Γ×{1}

(1− xz)
n

(1− z)
q dµ1 + (1− ǫ)

∫

Γ×(Γ\{1})

(1− xz)
n

(1− yz)
q dµ2.

(2.4)

The probability measure µ in (2.3) has three components; ǫ, µ1 and µ2. If we can
successfully describe this probability measure µ which satisfies equation (2.4), then
we prove the second half of Theorem 1.1. The rest of the proof will discuss the con-
ditions that ǫ, µ1 and µ2 must satisfy in order for (2.4) to hold, and the existence
of such probability measures. My original idea was that the probability measure µ

we need in order to show (1−x0z)
p

(1−z)q is a non extreme point when x0 is near 1 must

be similar to the probability measure we used for x0 = 1 earlier. Therefore we will
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examine how µ and its three components; ǫ, µ1 and µ2 behave as x0 → 1 in order
to construct a desirable µ.

First, we will show that ǫ in the probability measure µ described in (2.3) ap-
proaches 0 as x0 → 1. Rearrange the equation (2.4) by multiplying (1 − z)q on
both sides, and let z approach 1 radially from D. Then by the Lebesgue Dominated
Convergence Theorem, we obtain

(1− x0)
n
= ǫ

∫

Γ×{1}

(1− x)
n
dµ1. (2.5)

With the choice of µ1 described in (2.1),

(1− x0)
n = ǫ

[
R
(
1− eiα

)n
+ (1−R)

(
1− e−iα

)n]

= ǫ
[
R
(
1− eiα

)n
+ (1−R)

(
1− e−iα

)n]
+ (1− ǫ) · 0.

Hence the point (1− x0)
n

on Cn lies on the line segment connecting a point

R
(
1− eiα

)n
+ (1−R)

(
1− e−iα

)n
and the origin for an appropriate choice of R

(see Figure 1).
For a chosen angle α in µ1 from (2.1), the points A and B were determined.

For a given x0 near 1, the point D is determined. We connect the point D and
the origin then extend it to find the point C. This will determine ǫ since D =
ǫ ·C+(1− ǫ) ·0. As x0 approaches 1 on the unit circle (i.e, θ0 ↓ 0 for x0 = eiθ0), the
point D = (1− x0)

n
approaches the origin. Therefore as x0 approaches 1, ǫ → 0.

b

b

bA

B

bC
b
D

Figure 1: picture of Cn = {(1− x)p : |x| = 1} with A =
(
1− e−iα

)n
, B =(

1− eiα
)n
, C = R

(
1− eiα

)n
+ (1−R)

(
1− e−iα

)n
, and D = (1− x0)

n
.

Recall the probability measures µ1 and µ2 described in (2.1) and (2.2). Now we
examine the relationship between µ1 and λ. First if we expand the equation (2.5),
we obtain

ǫ

n∑

k=0

(
n

k

)
(−1)

k

∫

Γ×{1}

xkdµ1 =

n∑

k=0

(
n

k

)
(−1)

k
xk
0 .
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Thus

1− ǫ =

n∑

k=1

(
n

k

)
(−1)

k+1

[
xk
0 − ǫ

∫

Γ×{1}

xkdµ1

]
. (2.6)

Manipulate the equation (2.4) to yield

(1− ǫ)

∫

Γ×(Γ\{1})

(1− xz)
n

(1− yz)
q dµ2

=
(1− x0z)

n
− ǫ

∫
(1− xz)

n
dµ1

(1− z)
q

=
1− ǫ+

∑n

k=1

(
n
k

)
(−1)

k [
xk
0 − ǫ

∫
xkdµ1

]
zk

(1− z)
q .

Then substitute the equation (2.6) for 1− ǫ on the right-hand side above, we obtain

(1− ǫ)

∫

Γ×(Γ\{1})

(1− xz)
n

(1− yz)
q dµ2

=

∑n
k=1

(
n
k

)
(−1)k+1 [xk

0 − ǫ
∫
xkdµ1

] (
1− zk

)

(1− z)
q

=

∑n
k=1

(
n
k

)
(−1)

k+1 [
xk
0 − ǫ

∫
xkdµ1

]
(1− z)

(
1 + z + z2 + . . .+ zk−1

)

(1− z)
q

=

∑n

k=1

(
n
k

)
(−1)

k+1 [
xk
0 − ǫ

∫
xkdµ1

] (
1 + z + . . .+ zk−1

)

(1− z)
q−1 .

Now if we apply µ2 described in (2.2) to the left-hand side, the expression becomes

(1− ǫ)

(1− z)
q−1

∫

Γ

(1− xz)
n
dλ (x)

=

∑n

k=1

(
n
k

)
(−1)

k+1 [
xk
0 − ǫ

∫
xkdµ1

] (
1 + z + . . .+ zk−1

)

(1− z)
q−1 .

Hence we obtain

(1− ǫ)

∫
(1− xz)n dλ (x)

=

n∑

k=1

(
n

k

)
(−1)k+1

[
xk
0 − ǫ

∫
xkdµ1

] (
1 + z + . . .+ zk−1

)
.

(2.7)

The equation (2.7) shows the relationship between µ1 and λ. By comparing the
coefficient of zk, we gather the following n+ 1 conditions.

(1− ǫ)
n!

(n− i+ 1)! (i− 1)!

∫
(−1)

i−1
xi−1dλ

=

n∑

j=i

(−1)
j+1 n!

(n− j)!j!

(
xj
0 − ǫ

∫
xjdµ1

)
for 1 ≤ i ≤ n,
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and ∫
xndλ = 0.

The above conditions describe the specifics properties λ has to satisfy. Now we
describe how λ must behave as x0 approaches 1.
Let

Ul + iVl =
l

(n− l+ 1) (1− ǫ)

(
xn−l+1
0 − ǫ

∫
xn−l+1dµ1

)

for some Ul, Vl ∈ R,
√
U2
l + V 2

l ≤ 1.

Since ǫ → 0 as x0 approaches 1 on the unit circle (i.e, θ0 ↓ 0 for x0 = eiθ0),
Ul + iVl →

l
n−l+1 as x0 approaches 1. Now consider k + 1st condition above.

Then,

∫
xkdλ =

n−k∑

i=1

(−1)i+1 (n− k)!k!

(n− k − i+ 1)! (k + i− 1)!
(Un−k−i+1 + iVn−k−i+1) .

Therefore as x0 approaches 1,

∫
xkdλ →

n−k∑

i=1

(−1)
i+1 (n− k)!k!

(n− k − i+ 1)! (k + i− 1)!
·

n− k − i+ 1

(k + i+ 1) (k + i)

=
n− k

n
, for 1 ≤ k ≤ n− 1.

Let Ak = Re
∫
xkdλ and Bk = Im

∫
xxdλ. Then Ak → n−k

n
and Bk → 0 as x0

approaches 1. Now we propose the following measure dλx0
on Γ which behaves as

λ. Define

dλx0
=

[
1 + 2

n−1∑

k=1

(Ak cos (kθ) + iBk sin (kθ))

]
dθ

2π
. (2.8)

Then,
(a)

∫
dλx0

= 1

(b)
∫
xkdλx0

= Ak + iBk for 1 ≤ k ≤ n− 1
(c)

∫
xndλx0

= 0.
It is important to point out that dλx0

is not guaranteed to be non-negative. How-
ever, its limit is non-negative, and it satisfies the above three conditions.

lim
x0→1

dλx0
=

[
1 + 2

n−1∑

k=1

n− k

n
cos (kθ)

]
dθ

2π

Notice that
[
1 + 2

∑n−1
k=1

n−k
n

cos (kθ)
]

dθ
2π is the probability measure which was used

to prove that (1−x0z)
n

(1−z)q is a non extreme point when x0 = 1 earlier. Moreover,[
1 + 2

∑n−1
k=1

n−k
n

cos (kθ)
]

dθ
2π = 1

n

[
1−cos(nθ)
1−cos(θ)

]
dθ
2π has zeros at θ = 2πk

n
where k =

1, 2, . . . , n− 1, and each zero is 2π
n

apart. What we need to finish the proof now is
to define a measure which behaves as (2.8), and guaranteed to be non-negative over
Γ. To achieve this, we modify (2.8) by adding the term ρ (description of ρ below),
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and define the following measure.

d̃λx0
=

[
1 + 2

n−1∑

k=1

(Ak cos (kθ) + iBk sin (kθ)) + ρ

]
dθ

2π

The purpose of ρ is to add positive weight to
[
1 + 2

n−1∑

k=1

n− k

n
cos (kθ)

]
dθ

2π
(2.9)

at θ = 2πk
n

for k = 1, 2, . . . , n − 1 while it maintains the above three conditions
(a)-(c). Now we will show how to choose a desirable ρ. Let δ = π

4n . Then when
θ is δ away from each zero, measure (2.9) is strictly positive. In other words, if
2π
n

>
∣∣θ − 2πk

n

∣∣ ≥ δ,
[
1 + 2

n−1∑

k=1

n− k

n
cos (kθ)

]
> ηk (2.10)

for some ηk > 0 for each k = 1, 2, . . . , n − 1. Let η = min {ηk}
n−1
k=1 , and define

ρ = η
2 cos (2nθ). Then ρ has period of π

n
and attains its maximum value η

2 at
θ = mπ

n
, m ∈ Z. Notice when m is an even number less than 2n, θ = mπ

n
are the

zeros of 1 + 2
∑n−1

k=1
n−k
n

cos (kθ). Hence as promised, ρ adds positive weight η
2 to

(2.9) at θ = 2πk
n

for k = 1, 2, . . . , n− 1. That is, if
∣∣θ − 2πk

n

∣∣ < δ, then

[
1 + 2

n−1∑

k=1

n− k

n
cos (kθ) + ρ

]
dθ

2π
> 0.

Lastly, we must verify that
[
1 + 2

∑n−1
k=1

n−k
n

cos (kθ) + ρ
]

dθ
2π remains

strictly positive even when ρ is negative. Again ρ = η
2 cos (2nθ) has period of π

n

and attains its minimum value − η
2 at θ = π(2m−1)

2n , m ∈ Z. Starting at some
angle ω where ρ attains its maximum value η

2 , ρ = η
2 cos (2nω) = η

2 , ρ decreases

and passes through its zero, ρ = η
2 cos

(
2nω + π

4n

)
= 0 then its minimum value

ρ = η
2 cos

(
2nω + π

2n

)
= − η

2 . Recall that we chose δ = π
4n and result (2.10).

Therefore when θ is at least π
4n away from the zeros of

[
1 + 2

∑n−1
k=1

n−k
n

cos (kθ)
]

dθ
2π ,

1 + 2
∑n−1

k=1
n−k
n

cos (kθ) is guaranteed to be more than η while the smallest value

of ρ is − η
2 ; that is, if

π
n
>

∣∣θ − 2πk
n

∣∣ ≥ δ, then

1 + 2

n−1∑

k=1

n− k

n
cos (kθ) + ρ > η −

η

2
> 0.

Hence,

lim
x0→1

d̃λx0
=

[
1 + 2

n−1∑

k=1

n− k

n
cos (kθ) + ρ

]
dθ

2π
(2.11)

where (2.11) is a probability measure over Γ. Moreover, since the limit of d̃λx0
is

strictly positive, there exists x∗ near x0 = 1 such that d̃λx∗
≥ 0.
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Therefore,

(1− x∗z)
n

(1− z)
q = ǫ

∫

Γ×{1}

(1− xz)
n

(1− z)
q dµ1 + (1− ǫ)

∫

Γ×(Γ\{1})

(1− xz)
n

(1− yz)
q d̃λx∗

× dν

where µ1, ν and λ̃x∗
have been completely identified and equation (2.4) holds. This

proves the existence of non extreme points; (1−x∗z)
n

(1−z)q where x∗ is near 1. �

This concludes the proof of Theorem 1.1. The motivation of this paper was to show
the existence of non extreme points near x = 1 which was never shown before. At
the moment, we can only achieve this by restricting p to be a positive integer but
surprisingly no relation to the size of q except q ≥ 1. If we are only interested in
showing x = 1 is not extreme, then there are more non extreme points where p no

longer has to be a positive integer. It is well-known that (1−xz)p

(1−z)q is a non extreme

point when x = 1 for any p and q, provided q ≥ p. Our recent work on identifying
non extreme points for q ≥ 1, independent of p does not require p to be a positive
integer. However since this particular argument could not be extended to show the
existence of non extreme points near x = 1, I did not include this result in this
paper. But perhaps this result together with some special cases will be addressed
in a planned companion paper.

Lastly, of course the ultimate goal is to precisely determine all non extreme
points for any p and q. Combining the results from [3] and Theorem 1.1 in this
paper, we pose the following conjecture.

Conjecture 2.3. For fixed p and q with x = eiθ, there exists an angle θ̃ = θ̃(p, q)
separating extreme points from non extreme points as follows:

(a) If 0 < p ≤ 1, then (1−xz)p

(1−z)q is extreme if x 6= 1, and (1−xz)p

(1−z)q is not extreme if

x = 1.
(b) If p > 1, then 0 < θ̃ < π(p− 1)/(p+ 1) and (1−xz)p

(1−z)q is extreme if θ̃ ≤ |θ| ≤ π,

and
(1−xz)p

(1−z)q is not extreme if 0 ≤ |θ| < θ̃.

In the special case p = 2, q = 1, further analysis suggests that the critical angle θ̃

should yield an extreme point. According to (v) in Section 1, for 0 < p ≤ 1 (1−xz)p

(1−z)q

is an extreme point if x 6= 1, independent of q. It is also well-known that (1−xz)p

(1−z)q

is a non extreme point when x = 1 for any p and q, provided q ≥ p. Thus part
(a) of Conjecture 2.3 is correct if 0 < p ≤ 1 and q ≥ p. In this paper, we showed

that (1−xz)p

(1−z)q is a non extreme point if q ≥ 1 and p = n = 2, 3, 4, . . . , not only at

x = 1 but also for values of x near 1. Paired with the results from [3] we thus
have extreme points corresponding to values of x beyond the turning points and
non-extreme points in intervals near the origin, providing strong evidence for the
validity of part (b) of Conjecture 2.3, at least in the more tractable case of integer
valued p.
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